Skip to main content

Advertisement

Log in

MLN2238 synergizes BH3 mimetic ABT-263 in castration-resistant prostate cancer cells by induction of NOXA

  • Research Article
  • Published:
Tumor Biology

Abstract

Patients undergoing androgen blockade therapy develop castration-resistant prostate cancer (CRPC), which is associated with Bcl-2 upregulation and results in disease progression and death. In recent years, promising therapeutic agents, such as the BH3-only mimetic ABT-263 and proteasome inhibitors, have been developed and widely evaluated against a broad spectrum of cancer types, including prostate cancer, alone or in combination with other chemotherapeutic agents. In this study, the antitumor efficacy of ABT-263 and MLN2238 were evaluated as single agents and in combination in four CRPC cell lines: PC3, C4-2B, C4-2, and DU145. The viability of the treated cells and markers of apoptosis were assayed. Protein-protein interactions were analyzed by co-immunoprecipitation in drug-treated cells. Lentivirus-mediated short hairpin RNA was used to knockdown Bax, Mcl-1, and NOXA expressions. We found that ABT-263 and MLN2238 alone exhibited a mild cytotoxicity, and in combination, they elicited a synergistic cytotoxic effect in CRPC cells. The cell apoptosis induced by the combination drug treatment was evidenced by enhanced caspase-3 and Poly (ADP-ribose) polymerase (PARP) cleavage, and annexin-V-positive staining was significantly depleted by Bax knockdown. MLN2238 treatment upregulated NOXA and Mcl-1 expression, leading NOXA/Mcl-1 complexes to disassociate Bak from its complexes with Mcl-1 and enhancing ABT263-triggered Bax activation. NOXA knockdown by short hairpin RNA significantly attenuated the cytotoxicity of ABT-263 and MLN2238 co-administration. In conclusion, MLN2238 and ABT-263 synergistically triggered apoptosis in CRPC cells by upregulating NOXA and activating Bax, indicating a promising therapeutic strategy for the treatment of CRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADT:

Androgen deprivation therapy

CI:

Combination index

CRPC:

Castration-resistant prostate cancer

MOMP:

Mitochondrial outer membrane permeabilization

References

  1. Catalona WJ. Management of cancer of the prostate. N Engl J Med. 1994;331:996–1004.

    Article  CAS  PubMed  Google Scholar 

  2. Tammela T. Endocrine treatment of prostate cancer. J Steroid Biochem Mol Biol. 2004;92:287–95.

    Article  CAS  PubMed  Google Scholar 

  3. Chen L, Mooso BA, Jathal MK, Madhav A, Johnson SD, van Spyk E, et al. Dual EGFR/HER2 inhibition sensitizes prostate cancer cells to androgen withdrawal by suppressing ErbB3. Clin Cancer Res. 2011;17:6218–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tovar C, Higgins B, Kolinsky K, Xia M, Packman K, Heimbrook DC, et al. MDM2 antagonists boost antitumor effect of androgen withdrawal: implications for therapy of prostate cancer. Mol Cancer. 2011;10:49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Oh WK, Kantoff PW. Management of hormone refractory prostate cancer: current standards and future prospects. J Urol. 1998;160:1220–9.

    Article  CAS  PubMed  Google Scholar 

  6. Yamanaka K, Rocchi P, Miyake H, Fazli L, Vessella B, Zangemeister-Wittke U, et al. A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther. 2005;4:1689–98.

    Article  CAS  PubMed  Google Scholar 

  7. Pandit B, Gartel AL. New potential anti-cancer agents synergize with bortezomib and ABT-737 against prostate cancer. Prostate. 2010;70:825–33.

    CAS  PubMed  Google Scholar 

  8. Billard C. Design of novel BH3 mimetics for the treatment of chronic lymphocytic leukemia. Leukemia. 2012;26:2032–8.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshino T, Shiina H, Urakami S, Kikuno N, Yoneda T, Shigeno K, et al. Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res. 2006;12:6116–24.

    Article  CAS  PubMed  Google Scholar 

  10. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yecies D, Carlson NE, Deng J, Letai A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood. 2010;115:3304–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res. 2012;72:3069–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mason KD, Khaw SL, Rayeroux KC, Chew E, Lee EF, Fairlie WD, et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia. 2009;23:2034–41.

    Article  CAS  PubMed  Google Scholar 

  14. Tang H, Shao H, Yu C, Hou J. Mcl-1 downregulation by YM155 contributes to its synergistic anti-tumor activities with ABT-263. Biochem Pharmacol. 2011;82:1066–72.

    Article  CAS  PubMed  Google Scholar 

  15. Li R, Zang Y, Li C, Patel NS, Grandis JR, Johnson DE. ABT-737 synergizes with chemotherapy to kill head and neck squamous cell carcinoma cells via a Noxa-mediated pathway. Mol Pharmacol. 2009;75:1231–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. McConkey DJ, Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat. 2008;11:164–79.

    Article  CAS  PubMed  Google Scholar 

  17. Cusack JC. Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev. 2003;29 Suppl 1:21–31.

    Article  CAS  PubMed  Google Scholar 

  18. Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, Berger A, et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 2010;70:1970–80.

    Article  CAS  PubMed  Google Scholar 

  19. Dick LR, Fleming PE. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov Today. 2010;15:243–9.

    Article  CAS  PubMed  Google Scholar 

  20. Shao H, Gao C, Tang H, Zhang H, Roberts LR, Hylander BL, et al. Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo. J Hepatol. 2012;56:176–83.

    Article  CAS  PubMed  Google Scholar 

  21. Miller LA, Goldstein NB, Johannes WU, Walton CH, Fujita M, Norris DA, et al. BH3 mimetic ABT-737 and a proteasome inhibitor synergistically kill melanomas through Noxa-dependent apoptosis. J Invest Dermatol. 2009;129:964–71.

    Article  CAS  PubMed  Google Scholar 

  22. Paoluzzi L, Gonen M, Bhagat G, Furman RR, Gardner JR, Scotto L, et al. The BH3-only mimetic ABT-737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood. 2008;112:2906–16.

    Article  CAS  PubMed  Google Scholar 

  23. Chou TC, Talalay P. Quantitative analysis of doseeffect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  CAS  PubMed  Google Scholar 

  24. Westerberg CM, Hägglund H, Nilsson G. Proteasome inhibition upregulates Bim and induces caspase-3-dependent apoptosis in human mast cells expressing the Kit D816V mutation. Cell Death Dis. 2012;3:e417.

    Article  PubMed  Google Scholar 

  25. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 2005;19:1294–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nechushtan A, Smith CL, Hsu YT, Youle RJ. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 1999;18:2330–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Catz SD, Johnson JL. BCL-2 in prostate cancer: a minireview. Apoptosis. 2003;8:29–37.

    Article  CAS  PubMed  Google Scholar 

  28. Lin Y, Fukuchi J, Hiipakka RA, Kokontis JM, Xiang J. Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. Cell Res. 2007;17:531–6.

    Article  CAS  PubMed  Google Scholar 

  29. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995;55:4438–45.

    CAS  PubMed  Google Scholar 

  30. Gleave ME, Miayake H, Goldie J, Nelson C, Tolcher A. Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology. 1999;54(6A Suppl):36–46.

    Article  CAS  PubMed  Google Scholar 

  31. Yamanaka K, Rocchi P, Miyake H, Fazli L, Vessella B, Zangemeister-Wittke U, et al. A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther. 2005;4:1689–98.

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Chen D, Cui QC, Yuan X, Dou QP. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine”, is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006;66:4758–65.

    Article  CAS  PubMed  Google Scholar 

  33. Frankel A, Man S, Elliott P, Adams J, Kerbel RS. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res. 2000;6:3719–28.

    CAS  PubMed  Google Scholar 

  34. Mei Y, Xie C, Xie W, Tian X, Li M, Wu M. Noxa/Mcl-1 balance regulates susceptibility of cells to camptothecin-induced apoptosis. Neoplasia. 2007;9:871–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation Grant of China (No. 81072091/H1619) and Key Project of Guangzhou Municipal Health Bureau Grant, China (No. 20121A021006) to Ping Tang.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Tang.

Additional information

Xinghua Wei, Ping Zhou, and Xuanting Lin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhou, P., Lin, X. et al. MLN2238 synergizes BH3 mimetic ABT-263 in castration-resistant prostate cancer cells by induction of NOXA. Tumor Biol. 35, 10213–10221 (2014). https://doi.org/10.1007/s13277-014-2333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2333-y

Keywords

Navigation