Skip to main content

Advertisement

Log in

Nitidine chloride induces apoptosis, cell cycle arrest, and synergistic cytotoxicity with doxorubicin in breast cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Medicinal plant extracts have been widely used for cancer treatment. Nitidine chloride (NC) is a natural bioactive alkaloid that has recently been reported to have diverse anticancer properties. We aimed to investigate the cytotoxic effects of NC and the effectiveness of combinatorial treatment including NC and doxorubicin in breast cancer cells. Using MTT and flowcytometry assays, we found that NC induced cell growth inhibition and G2/M cell cycle arrest in a time- and dose-dependent manner both in MCF-7 and MDA-MB-231 breast cancer cell lines. Cancer cell growth inhibition was associated with increased levels of the p53 and p21 proteins. Apoptosis induction by NC treatment was confirmed by JC-1 mitochondrial membrane potential, annexin V-positive cell, and TUNEL staining. Using western blot analysis, we found that NC upregulated the pro-apoptotic proteins Bax, cleaved caspase-9 and -3 and cleaved PARP and that it downregulated the anti-apoptotic proteins Bcl-2 and PARP. By using the PI3K/Akt inhibitor LY294002, we further demonstrated that NC-induced apoptosis might be Akt-specific or dependent. In addition, NC exhibited a synergistic effect with doxorubicin on the growth inhibition of the human breast cancer cell lines MCF-7 and MDA-MB-231. Our study demonstrated the anticancer effect of NC on breast cancer and highlighted the potential clinical application of NC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yedjou C, Izevbigie E, Tchounwou P. Preclinical assessment of Vernonia amygdalina leaf extracts as DNA damaging anti-cancer agent in the management of breast cancer. Int J Environ Res Publ Health. 2008;5:337–41.

    Article  Google Scholar 

  2. Ligresti G, Libra M, Militello L, Clementi S, Donia M, Imbesi R, et al. Breast cancer: molecular basis and therapeutic strategies (review). Mol Med Rep. 2008;1:451–8.

    CAS  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: Cancer J Clin. 2010;60:277–300.

    Google Scholar 

  4. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.

    Article  CAS  PubMed  Google Scholar 

  5. Pu CY, Lan VM, Lan CF, Lang HC. The determinants of traditional Chinese medicine and acupuncture utilization for cancer patients with simultaneous conventional treatment. Eur J Cancer Care. 2008;17:340–9.

    Article  Google Scholar 

  6. Wang Z, Jiang W, Zhang Z, Qian M, Du B. Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappab pathway in raw 264.7 cells. J Ethnopharmacol. 2012;144:145–50.

    Article  CAS  PubMed  Google Scholar 

  7. Bouquet J, Rivaud M, Chevalley S, Deharo E, Jullian V, Valentin A. Biological activities of nitidine, a potential anti-malarial lead compound. Malar J. 2012;11:67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Del Poeta M, Chen SF, Von Hoff D, Dykstra CC, Wani MC, Manikumar G, et al. Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells. Antimicrob Agents Chemother. 1999;43:2862–8.

    PubMed Central  PubMed  Google Scholar 

  9. Chen J, Wang J, Lin L, He L, Wu Y, Zhang L, et al. Inhibition of stat3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther. 2012;11:277–87.

    Article  CAS  PubMed  Google Scholar 

  10. Fang Z, Tang Y, Jiao W, Xing Z, Guo Z, Wang W, et al. Nitidine chloride inhibits renal cancer cell metastasis via suppressing akt signaling pathway. Food Chem Toxicol: int J Publ Br Ind Biol Res Assoc. 2013;60:246–51.

    Article  CAS  Google Scholar 

  11. Fang Z, Tang Y, Jiao W, Xing Z, Guo Z, Wang W, et al. Nitidine chloride induces apoptosis and inhibits tumor cell proliferation via suppressing erk signaling pathway in renal cancer. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc. 2014;66:210–6.

    Article  CAS  Google Scholar 

  12. Liao J, Xu T, Zheng JX, Lin JM, Cai QY, Yu DB, et al. Nitidine chloride inhibits hepatocellular carcinoma cell growth in vivo through the suppression of the jak1/stat3 signaling pathway. Int J Mol Med. 2013;32:79–84.

    CAS  PubMed  Google Scholar 

  13. Pan X, Han H, Wang L, Yang L, Li R, Li Z, et al. Nitidine chloride inhibits breast cancer cells migration and invasion by suppressing c-src/fak associated signaling pathway. Cancer Lett. 2011;313:181–91.

    Article  CAS  PubMed  Google Scholar 

  14. Hao JQ, Li Q, Xu SP, Shen YX, Sun GY. Effect of lumiracoxib on proliferation and apoptosis of human nonsmall cell lung cancer cells in vitro. Chin Med J. 2008;121:602–7.

    CAS  PubMed  Google Scholar 

  15. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the j-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun. 1993;197:40–5.

    Article  CAS  PubMed  Google Scholar 

  16. Levine AJ, Hu W, Feng Z. The p53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027–36.

    Article  CAS  PubMed  Google Scholar 

  17. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, et al. P53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced g1 arrest. Cell. 1994;76:1013–23.

    Article  CAS  PubMed  Google Scholar 

  18. Anttila MA, Kosma VM, Hongxiu J, Puolakka J, Juhola M, Saarikoski S, et al. P21/waf1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer. Br J Cancer. 1999;79:1870–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hennet T, Bertoni G, Richter C, Peterhans E. Expression of bcl-2 protein enhances the survival of mouse fibrosarcoid cells in tumor necrosis factor-mediated cytotoxicity. Cancer Res. 1993;53:1456–60.

    CAS  PubMed  Google Scholar 

  20. Calandria C, Irurzun A, Barco A, Carrasco L. Individual expression of poliovirus 2apro and 3cpro induces activation of caspase-3 and parp cleavage in hela cells. Virus Res. 2004;104:39–49.

    Article  CAS  PubMed  Google Scholar 

  21. Yap E, Tan WL, Ng I, Ng YK. Combinatorial-approached neuroprotection using pan-caspase inhibitor and poly (adp-ribose) polymerase (parp) inhibitor following experimental stroke in rats; is there additional benefit? Brain Res. 2008;1195:130–8.

    Article  CAS  PubMed  Google Scholar 

  22. Sebolt-Leopold JS, English JM. Mechanisms of drug inhibition of signalling molecules. Nature. 2006;441:457–62.

    Article  CAS  PubMed  Google Scholar 

  23. Noshita N, Lewen A, Sugawara T, Chan PH. Evidence of phosphorylation of akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2001;21:1442–50.

    Article  CAS  Google Scholar 

  24. Stein R, Smith MR, Chen S, Zalath M, Goldenberg DM. Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:2808–17.

    Article  CAS  Google Scholar 

  25. Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer therapy. Cancer Lett. 2004;215:129–40.

    Article  CAS  PubMed  Google Scholar 

  26. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.

    Article  CAS  PubMed  Google Scholar 

  27. Tan AC, Konczak I, Sze DM, Ramzan I. Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer. 2011;63:495–505.

    Article  CAS  PubMed  Google Scholar 

  28. Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ. Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer J Int Cancer. 2007;120:451–8.

    Article  CAS  Google Scholar 

  29. Adams JM, Cory S. The bcl-2 protein family: Arbiters of cell survival. Science. 1998;281:1322–6.

    Article  CAS  PubMed  Google Scholar 

  30. Kim R. Unknotting the roles of bcl-2 and bcl-xl in cell death. Biochem Biophys Res Commun. 2005;333:336–43.

    Article  CAS  PubMed  Google Scholar 

  31. Mayorga M, Bahi N, Ballester M, Comella JX, Sanchis D. Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. J Biol Chem. 2004;279:34882–9.

    Article  CAS  PubMed  Google Scholar 

  32. Precht TA, Phelps RA, Linseman DA, Butts BD, Le SS, Laessig TA, et al. The permeability transition pore triggers bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ. 2005;12:255–65.

    Article  CAS  PubMed  Google Scholar 

  33. Eldering E, Mackus WJ, Derks IA, Evers LM, Beuling E, Teeling P, et al. Apoptosis via the b cell antigen receptor requires bax translocation and involves mitochondrial depolarization, cytochrome c release, and caspase-9 activation. Eur J Immunol. 2004;34:1950–60.

    Article  CAS  PubMed  Google Scholar 

  34. Crompton M. Bax, bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol. 2000;12:414–9.

    Article  CAS  PubMed  Google Scholar 

  35. Valentijn AJ, Upton JP, Bates N, Gilmore AP. Bax targeting to mitochondria occurs via both tail anchor-dependent and -independent mechanisms. Cell Death Differ. 2008;15:1243–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.

    Article  CAS  PubMed  Google Scholar 

  37. Murray AW. Recycling the cell cycle: cyclins revisited. Cell. 2004;116:221–34.

    Article  CAS  PubMed  Google Scholar 

  38. Abu Bakar MF, Mohamad M, Rahmat A, Burr SA, Fry JR. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan). Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc. 2010;48:1688–97.

    Article  CAS  Google Scholar 

  39. Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.

    Article  CAS  PubMed  Google Scholar 

  40. O'Connell MJ, Walworth NC, Carr AM. The g2-phase DNA-damage checkpoint. Trends Cell Biol. 2000;10:296–303.

    Article  PubMed  Google Scholar 

  41. Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, et al. Phosphorylation of bax ser184 by akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 2004;279:21085–95.

    Article  CAS  PubMed  Google Scholar 

  42. Schulze-Bergkamen H, Brenner D, Krueger A, Suess D, Fas SC, Frey CR, et al. Hepatocyte growth factor induces mcl-1 in primary human hepatocytes and inhibits cd95-mediated apoptosis via akt. Hepatology. 2004;39:645–54.

    Article  CAS  PubMed  Google Scholar 

  43. Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2013;90(3):200–19.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 30772133, no. 81072150, no. 81172529, and no. 81272903) and the Shandong Science and Technology Development Plan (no. 2012GZC22115). Disclosure Statement: None. We thank Cunzhong Yuan and Shi Yan for technical supports with experiments. We also thank Xiangnan Kong and Xiaoyan Li for critical discussing and substantial helps.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Zhang, N., Wang, X. et al. Nitidine chloride induces apoptosis, cell cycle arrest, and synergistic cytotoxicity with doxorubicin in breast cancer cells. Tumor Biol. 35, 10201–10212 (2014). https://doi.org/10.1007/s13277-014-2327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2327-9

Keywords

Navigation