Tumor Biology

, Volume 35, Issue 10, pp 10201–10212 | Cite as

Nitidine chloride induces apoptosis, cell cycle arrest, and synergistic cytotoxicity with doxorubicin in breast cancer cells

  • Mingjuan Sun
  • Ning Zhang
  • Xiaolong Wang
  • Chang Cai
  • Jinjing Cun
  • Yaming Li
  • Shangge Lv
  • Qifeng Yang
Research Article


Medicinal plant extracts have been widely used for cancer treatment. Nitidine chloride (NC) is a natural bioactive alkaloid that has recently been reported to have diverse anticancer properties. We aimed to investigate the cytotoxic effects of NC and the effectiveness of combinatorial treatment including NC and doxorubicin in breast cancer cells. Using MTT and flowcytometry assays, we found that NC induced cell growth inhibition and G2/M cell cycle arrest in a time- and dose-dependent manner both in MCF-7 and MDA-MB-231 breast cancer cell lines. Cancer cell growth inhibition was associated with increased levels of the p53 and p21 proteins. Apoptosis induction by NC treatment was confirmed by JC-1 mitochondrial membrane potential, annexin V-positive cell, and TUNEL staining. Using western blot analysis, we found that NC upregulated the pro-apoptotic proteins Bax, cleaved caspase-9 and -3 and cleaved PARP and that it downregulated the anti-apoptotic proteins Bcl-2 and PARP. By using the PI3K/Akt inhibitor LY294002, we further demonstrated that NC-induced apoptosis might be Akt-specific or dependent. In addition, NC exhibited a synergistic effect with doxorubicin on the growth inhibition of the human breast cancer cell lines MCF-7 and MDA-MB-231. Our study demonstrated the anticancer effect of NC on breast cancer and highlighted the potential clinical application of NC.


Nitidine chloride Apoptosis Cycle arrest Synergistic cytotoxicity Breast cancer 



This work was supported by the National Natural Science Foundation of China (no. 30772133, no. 81072150, no. 81172529, and no. 81272903) and the Shandong Science and Technology Development Plan (no. 2012GZC22115). Disclosure Statement: None. We thank Cunzhong Yuan and Shi Yan for technical supports with experiments. We also thank Xiangnan Kong and Xiaoyan Li for critical discussing and substantial helps.

Conflicts of interest



  1. 1.
    Yedjou C, Izevbigie E, Tchounwou P. Preclinical assessment of Vernonia amygdalina leaf extracts as DNA damaging anti-cancer agent in the management of breast cancer. Int J Environ Res Publ Health. 2008;5:337–41.CrossRefGoogle Scholar
  2. 2.
    Ligresti G, Libra M, Militello L, Clementi S, Donia M, Imbesi R, et al. Breast cancer: molecular basis and therapeutic strategies (review). Mol Med Rep. 2008;1:451–8.PubMedGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: Cancer J Clin. 2010;60:277–300.Google Scholar
  4. 4.
    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Pu CY, Lan VM, Lan CF, Lang HC. The determinants of traditional Chinese medicine and acupuncture utilization for cancer patients with simultaneous conventional treatment. Eur J Cancer Care. 2008;17:340–9.CrossRefGoogle Scholar
  6. 6.
    Wang Z, Jiang W, Zhang Z, Qian M, Du B. Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappab pathway in raw 264.7 cells. J Ethnopharmacol. 2012;144:145–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Bouquet J, Rivaud M, Chevalley S, Deharo E, Jullian V, Valentin A. Biological activities of nitidine, a potential anti-malarial lead compound. Malar J. 2012;11:67.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Del Poeta M, Chen SF, Von Hoff D, Dykstra CC, Wani MC, Manikumar G, et al. Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells. Antimicrob Agents Chemother. 1999;43:2862–8.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Chen J, Wang J, Lin L, He L, Wu Y, Zhang L, et al. Inhibition of stat3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther. 2012;11:277–87.CrossRefPubMedGoogle Scholar
  10. 10.
    Fang Z, Tang Y, Jiao W, Xing Z, Guo Z, Wang W, et al. Nitidine chloride inhibits renal cancer cell metastasis via suppressing akt signaling pathway. Food Chem Toxicol: int J Publ Br Ind Biol Res Assoc. 2013;60:246–51.CrossRefGoogle Scholar
  11. 11.
    Fang Z, Tang Y, Jiao W, Xing Z, Guo Z, Wang W, et al. Nitidine chloride induces apoptosis and inhibits tumor cell proliferation via suppressing erk signaling pathway in renal cancer. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc. 2014;66:210–6.CrossRefGoogle Scholar
  12. 12.
    Liao J, Xu T, Zheng JX, Lin JM, Cai QY, Yu DB, et al. Nitidine chloride inhibits hepatocellular carcinoma cell growth in vivo through the suppression of the jak1/stat3 signaling pathway. Int J Mol Med. 2013;32:79–84.PubMedGoogle Scholar
  13. 13.
    Pan X, Han H, Wang L, Yang L, Li R, Li Z, et al. Nitidine chloride inhibits breast cancer cells migration and invasion by suppressing c-src/fak associated signaling pathway. Cancer Lett. 2011;313:181–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Hao JQ, Li Q, Xu SP, Shen YX, Sun GY. Effect of lumiracoxib on proliferation and apoptosis of human nonsmall cell lung cancer cells in vitro. Chin Med J. 2008;121:602–7.PubMedGoogle Scholar
  15. 15.
    Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the j-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun. 1993;197:40–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Levine AJ, Hu W, Feng Z. The p53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027–36.CrossRefPubMedGoogle Scholar
  17. 17.
    Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, et al. P53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced g1 arrest. Cell. 1994;76:1013–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Anttila MA, Kosma VM, Hongxiu J, Puolakka J, Juhola M, Saarikoski S, et al. P21/waf1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer. Br J Cancer. 1999;79:1870–8.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hennet T, Bertoni G, Richter C, Peterhans E. Expression of bcl-2 protein enhances the survival of mouse fibrosarcoid cells in tumor necrosis factor-mediated cytotoxicity. Cancer Res. 1993;53:1456–60.PubMedGoogle Scholar
  20. 20.
    Calandria C, Irurzun A, Barco A, Carrasco L. Individual expression of poliovirus 2apro and 3cpro induces activation of caspase-3 and parp cleavage in hela cells. Virus Res. 2004;104:39–49.CrossRefPubMedGoogle Scholar
  21. 21.
    Yap E, Tan WL, Ng I, Ng YK. Combinatorial-approached neuroprotection using pan-caspase inhibitor and poly (adp-ribose) polymerase (parp) inhibitor following experimental stroke in rats; is there additional benefit? Brain Res. 2008;1195:130–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Sebolt-Leopold JS, English JM. Mechanisms of drug inhibition of signalling molecules. Nature. 2006;441:457–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Noshita N, Lewen A, Sugawara T, Chan PH. Evidence of phosphorylation of akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2001;21:1442–50.CrossRefGoogle Scholar
  24. 24.
    Stein R, Smith MR, Chen S, Zalath M, Goldenberg DM. Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:2808–17.CrossRefGoogle Scholar
  25. 25.
    Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer therapy. Cancer Lett. 2004;215:129–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Tan AC, Konczak I, Sze DM, Ramzan I. Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer. 2011;63:495–505.CrossRefPubMedGoogle Scholar
  28. 28.
    Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ. Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer J Int Cancer. 2007;120:451–8.CrossRefGoogle Scholar
  29. 29.
    Adams JM, Cory S. The bcl-2 protein family: Arbiters of cell survival. Science. 1998;281:1322–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim R. Unknotting the roles of bcl-2 and bcl-xl in cell death. Biochem Biophys Res Commun. 2005;333:336–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Mayorga M, Bahi N, Ballester M, Comella JX, Sanchis D. Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. J Biol Chem. 2004;279:34882–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Precht TA, Phelps RA, Linseman DA, Butts BD, Le SS, Laessig TA, et al. The permeability transition pore triggers bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ. 2005;12:255–65.CrossRefPubMedGoogle Scholar
  33. 33.
    Eldering E, Mackus WJ, Derks IA, Evers LM, Beuling E, Teeling P, et al. Apoptosis via the b cell antigen receptor requires bax translocation and involves mitochondrial depolarization, cytochrome c release, and caspase-9 activation. Eur J Immunol. 2004;34:1950–60.CrossRefPubMedGoogle Scholar
  34. 34.
    Crompton M. Bax, bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol. 2000;12:414–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Valentijn AJ, Upton JP, Bates N, Gilmore AP. Bax targeting to mitochondria occurs via both tail anchor-dependent and -independent mechanisms. Cell Death Differ. 2008;15:1243–54.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Murray AW. Recycling the cell cycle: cyclins revisited. Cell. 2004;116:221–34.CrossRefPubMedGoogle Scholar
  38. 38.
    Abu Bakar MF, Mohamad M, Rahmat A, Burr SA, Fry JR. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan). Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc. 2010;48:1688–97.CrossRefGoogle Scholar
  39. 39.
    Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.CrossRefPubMedGoogle Scholar
  40. 40.
    O'Connell MJ, Walworth NC, Carr AM. The g2-phase DNA-damage checkpoint. Trends Cell Biol. 2000;10:296–303.CrossRefPubMedGoogle Scholar
  41. 41.
    Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, et al. Phosphorylation of bax ser184 by akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 2004;279:21085–95.CrossRefPubMedGoogle Scholar
  42. 42.
    Schulze-Bergkamen H, Brenner D, Krueger A, Suess D, Fas SC, Frey CR, et al. Hepatocyte growth factor induces mcl-1 in primary human hepatocytes and inhibits cd95-mediated apoptosis via akt. Hepatology. 2004;39:645–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2013;90(3):200–19.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Mingjuan Sun
    • 1
  • Ning Zhang
    • 1
  • Xiaolong Wang
    • 1
  • Chang Cai
    • 1
  • Jinjing Cun
    • 1
  • Yaming Li
    • 1
  • Shangge Lv
    • 1
  • Qifeng Yang
    • 1
  1. 1.Department of Breast Surgery, Qilu HospitalShandong UniversityJi’nanChina

Personalised recommendations