Tumor Biology

, Volume 35, Issue 10, pp 10539–10546 | Cite as

Serum CCL2 and CCL3 as potential biomarkers for the diagnosis of oral squamous cell carcinoma

  • Liang Ding
  • Bing Li
  • Ying Zhao
  • Yi-Fu Fu
  • Er-Ling Hu
  • Qin-Gang Hu
  • Yan-Hong Ni
  • Ya-Yi Hou
Research Article


Monocyte chemotactic protein-1 (MCP-1/CCL2) and macrophage inflammatory protein-1α (MIP-1α/CCL3) are small chemotactic proteins that have been found in several kinds of tumor tissue samples and function as key regulators of cancer progression. However, the expression of CCL2 and CCL3 in serum samples of oral squamous cell carcinoma (OSCC) patients remains unknown. This study aimed to investigate the prognostic meaning of serum CCL2 and CCL3 in OSCC. The concentration of CCL2 and CCL3 was assessed by ELISA in serum of OSCC patients (n = 98), leukoplakia patients (n = 14), and healthy donors (n = 27). The results showed that the concentration of CCL2 in the OSCC group was significantly lower compared to that in the healthy controls (67.81 vs. 108.1 pg/ml, P < 0.0001). The CCL3 concentration was higher in leukoplakia patients than in OSCC patients and healthy donors (201.9 vs. 153.9 or 118.3 pg/ml, P < 0.05). No significant difference in CCL3 concentration was observed between OSCC patients and healthy donors. However, the OSCC group clearly presented two subclusters, i.e., CCL3 LOW and CCL3 HIGH OSCC subclusters, in which the serum level of CCL3 was positively related to the tumor size. Interestingly, the ratio of CCL2/CCL3 in OSCC patients was correlated to TNM (tumor, node, metastasis), smoking habits, and differentiation. The receiver operating characteristic (ROC) curve suggests that serum CCL2 is a good diagnostic marker to discriminate OSCC patients from healthy people (cutoff value, 101.1 pg/ml) and the ratio of CCL2/CCL3 also is a good diagnostic marker to discriminate leukoplakia patients and CCL3 HIGH OSCC patients from healthy people (cutoff values, 1.080 and 0.424, respectively). These results indicate that CCL2 and CCL3 are associated with progression of OSCC and may be potential biomarkers.


CCL2 CCL3 Oral squamous cell carcinoma Diagnosis Biomarker 



This work was supported by a grant from the National Natural Science Foundation of China (No. 81072213, 81271698, 81100768), Nanjing Medical Science & Research Project (No. YKK11039, YKK13145), Nanjing Medical Young Engineer (QRX113311), National Key Disciplines Constructional Project Funding (since 2011), Jiangsu Provincial Clinical Medicine of Science and Technology project (Grant No. BL2012017), Nanjing Municipal Key Medical Laboratory Constructional Project Funding (since 2012), and Center of Nanjing Clinical Medicine of tumor project (since 2014).


  1. 1.
    Chen C, Mendez E, Houck J, Fan W, Lohavanichbutr P, Doody D, et al. Gene expression profiling identifies genes predictive of oral squamous cell carcinoma. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2008;17(8):2152–62. doi: 10.1158/1055-9965.EPI-07-2893.CrossRefGoogle Scholar
  2. 2.
    Al-Swiahb JN, Chen CH, Chuang HC, Fang FM, Tasi HT, Chien CY. Clinical, pathological and molecular determinants in squamous cell carcinoma of the oral cavity. Future Oncol. 2010;6(5):837–50. doi: 10.2217/fon.10.35.CrossRefPubMedGoogle Scholar
  3. 3.
    Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Reboiras-Lopez MD, Gandara Rey JM, Garcia-Garcia A. Genetic and molecular alterations associated with oral squamous cell cancer (review). Oncol Rep. 2009;22(6):1277–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Reibel J. Prognosis of oral pre-malignant lesions: significance of clinical, histopathological, and molecular biological characteristics. Crit Rev Oral Biol Med: Off Publ Am Assoc Oral Biol. 2003;14(1):47–62.CrossRefGoogle Scholar
  5. 5.
    Mucke T, Wagenpfeil S, Kesting MR, Holzle F, Wolff KD. Recurrence interval affects survival after local relapse of oral cancer. Oral Oncol. 2009;45(8):687–91. doi: 10.1016/j.oraloncology.2008.10.011.CrossRefPubMedGoogle Scholar
  6. 6.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. doi: 10.1038/nature07205.CrossRefPubMedGoogle Scholar
  7. 7.
    Allavena P, Germano G, Marchesi F, Mantovani A. Chemokines in cancer related inflammation. Exp Cell Res. 2011;317(5):664–73. doi: 10.1016/j.yexcr.2010.11.013.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee HW, Choi HJ, Ha SJ, Lee KT, Kwon YG. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim Biophys Acta. 2013;1835(2):170–9. doi: 10.1016/j.bbcan.2012.12.007.PubMedGoogle Scholar
  9. 9.
    Arenberg DA, Keane MP, DiGiovine B, Kunkel SL, Strom SR, Burdick MD, et al. Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunol Immunother : CII. 2000;49(2):63–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res : Off J Am Assoc Cancer Res. 2000;6(8):3282–9.Google Scholar
  11. 11.
    Negus RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S, et al. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest. 1995;95(5):2391–6. doi: 10.1172/JCI117933.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Riethdorf L, Riethdorf S, Gutzlaff K, Prall F, Loning T. Differential expression of the monocyte chemoattractant protein-1 gene in human papillomavirus-16-infected squamous intraepithelial lesions and squamous cell carcinomas of the cervix uteri. Am J Pathol. 1996;149(5):1469–76.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Bottazzi B, Walter S, Govoni D, Colotta F, Mantovani A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol. 1992;148(4):1280–5.PubMedGoogle Scholar
  14. 14.
    Aggarwal R, Ghobrial IM, Roodman GD. Chemokines in multiple myeloma. Exp Hematol. 2006;34(10):1289–95. doi: 10.1016/j.exphem.2006.06.017.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Wu Y, Li YY, Matsushima K, Baba T, Mukaida N. CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J Immunol. 2008;181(9):6384–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Tsuda Y, Fukui H, Asai A, Fukunishi S, Miyaji K, Fujiwara S, et al. An immunosuppressive subtype of neutrophils identified in patients with hepatocellular carcinoma. J Clin Biochem Nutr. 2012;51(3):204–12. doi: 10.3164/jcbn.12-32.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Sasaki S, Baba T, Shinagawa K, Matsushima K, Mukaida N. Crucial involvement of the CCL3-CCR5 axis-mediated fibroblast accumulation in colitis-associated carcinogenesis in mice. Int J Cancer. 2014. doi: 10.1002/ijc.28779.PubMedCentralGoogle Scholar
  18. 18.
    Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218(11):1402–10. doi: 10.1016/j.imbio.2013.06.003.CrossRefPubMedGoogle Scholar
  19. 19.
    Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, Charo IF, et al. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol. 2008;180(10):6846–53.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res : Off J Int Soc Interf Cytokine Res. 2009;29(6):313–26. doi: 10.1089/jir.2008.0027.CrossRefGoogle Scholar
  21. 21.
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5. doi: 10.1038/nature10138.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A. 2012;109(7):2491–6. doi: 10.1073/pnas.1113744109.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Wang WW, Ang SF, Kumar R, Heah C, Utama A, Tania NP, et al. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma. PLoS One. 2013;8(7):e68904. doi: 10.1371/journal.pone.0068904.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wu J, Liu X, Wang Y. Predictive value of preoperative serum CCL2, CCL18, and VEGF for the patients with gastric cancer. BMC Clin Pathol. 2013;13:15. doi: 10.1186/1472-6890-13-15.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Monti P, Leone BE, Marchesi F, Balzano G, Zerbi A, Scaltrini F, et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res. 2003;63(21):7451–61.PubMedGoogle Scholar
  26. 26.
    Kantola T, Klintrup K, Vayrynen JP, Vornanen J, Bloigu R, Karhu T, et al. Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma. Br J Cancer. 2012;107(10):1729–36. doi: 10.1038/bjc.2012.456.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Tsaur I, Noack A, Waaga-Gasser AM, Makarevic J, Schmitt L, Kurosch M, et al. Chemokines involved in tumor promotion and dissemination in patients with renal cell cancer. Cancer Biomark : Sect A Dis Markers. 2011;10(5):195–204. doi: 10.3233/CBM-2012-0247.Google Scholar
  28. 28.
    Gonzalez-Martin A, Gomez L, Lustgarten J, Mira E, Manes S. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells. Cancer Res. 2011;71(16):5455–66. doi: 10.1158/0008-5472.CAN-11-1687.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakasone Y, Fujimoto M, Matsushita T, Hamaguchi Y, Huu DL, Yanaba M, et al. Host-derived MCP-1 and MIP-1alpha regulate protective anti-tumor immunity to localized and metastatic B16 melanoma. Am J Pathol. 2012;180(1):365–74. doi: 10.1016/j.ajpath.2011.09.005.CrossRefPubMedGoogle Scholar
  30. 30.
    Wong JL, Berk E, Edwards RP, Kalinski P. IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res. 2013;73(15):4653–62. doi: 10.1158/0008-5472.CAN-12-4366.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Central Laboratory of Stomatology, Hospital of Stomatology, and the State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Department of Oral and Maxillofacial Surgery, Institute and Hospital of Stomatology, Nanjing University Medical SchoolNanjing Stomatological HospitalNanjingPeople’s Republic of China

Personalised recommendations