Advertisement

Tumor Biology

, Volume 35, Issue 10, pp 9879–9892 | Cite as

Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population

  • Rachel Eyre
  • Ian Harvey
  • Katherine Stemke-Hale
  • Thomas W. J. Lennard
  • Alison Tyson-Capper
  • Annette P. MeesonEmail author
Research Article

Abstract

The majority of deaths in ovarian cancer are caused by recurrent metastatic disease which is usually multidrug resistant. This progression has been hypothesised to be due in part to the presence of cancer stem cells, a subset of cells which are capable of self-renewal and are able to survive chemotherapy and migrate to distant sites. Side population (SP) cells, identified by the efflux of the DNA-binding dye Hoechst 33342 through ATP-binding cassette (ABC) transporters, are a known adult stem cell group and have been suggested as a cancer stem cell in various cancers. Despite the identification of SP cells in cancer cell lines and patient samples, little attention has been paid to the identification of specific ABC transporters within this cell fraction which efflux Hoechst dye and thus may facilitate drug resistance. In this study, we demonstrate that SP cells can be detected in both ovarian cancer cell lines and ascitic fluid samples, and these SP cells possess stem cell and drug resistance properties. We show that ABCB1 is the functioning ABC transporter in ovarian cancer cell lines, and expression of ABCB1 is associated with a paclitaxel-resistant phenotype. Moreover, silencing of ABCB1 using a specific morpholino oligonucleotide results in an inhibition of the SP phenotype and a sensitising of ovarian cancer cell lines to paclitaxel. ABCB1 should therefore be considered as a therapeutic target in ovarian cancer.

Keywords

Ovarian cancer Side population cells Paclitaxel ABCB1 

Notes

Acknowledgments

STR DNA fingerprinting was done by the Cancer Centre Support Grant-funded Characterized Cell Line core, NCI # CA016672.

Funding

Rachel Eyre was supported by a Dr. William Edmund Harker Foundation Studentship.

Conflict of interest

None.

Authors’ roles

R.E. performed experimental work, assisted in experimental design and wrote manuscript. I.H performed experiments. K.S.-H. authenticated and provided cell lines. T.W.J.L. provided clinical expertise and assisted with manuscript writing. A.T.-C. assisted in study design and writing of manuscript. A.P.M.: study design and wrote the manuscript. All authors approved the submitted version of the manuscript.

Supplementary material

13277_2014_2277_MOESM1_ESM.pptx (735 kb)
ESM 1 (PPTX 735 kb)
13277_2014_2277_MOESM2_ESM.pptx (89 kb)
ESM 2 (PPTX 88 kb)
13277_2014_2277_MOESM3_ESM.pptx (386 kb)
ESM 3 (PPTX 385 kb)
13277_2014_2277_MOESM4_ESM.pptx (181 kb)
ESM 4 (PPTX 181 kb)

References

  1. 1.
    Ponnusamy MP, Batra SK. Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res. 2008;1(1):4–13.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Fallowfield L, Fleissig A, Barrett J, Menon U, Jacobs T, Kilkerr J, et al. Awareness of ovarian cancer risk factors, beliefs and attitudes towards screening: baseline survey of 21 715 women participating in the UK Collaborative Trial of Ovarian Cancer Screening. Br J Cancer. 2010;103:454–61.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Vathipadiekal V, Saxena D, Mok SC, Hauschka PV, Ozbun L, Birrer MJ. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer. PLoS One. 2012;7(1):e29079.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Yap TA, Carden CP, Kaye SB. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer. 2009;9:167–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Bapat SA. Human ovarian cancer stem cells. Reproduction. 2010;140(1):33–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2008;28(2):209–18.CrossRefPubMedGoogle Scholar
  7. 7.
    Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27(12):2875–83.PubMedGoogle Scholar
  8. 8.
    Alvero AB, Chen R, Fu HH, Montagna M. Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8(1):158–66.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Zhang Y, Piao, B., Zhang, Y., Hua, B., Hou, W., Xu, W., Qi, X., Zhu, X., Pei, Y., Lin, H. Oxymatrine diminishes the side population and inhibits the expression of β-catenin in MCF-7 breast cancer cells. Med Oncol. 2010.Google Scholar
  10. 10.
    Gao MQ, Choi YP, Kang S, Youn JH, Cho NH. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29(18):2672–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Balicki D. Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell. 2007;1(5):485–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101(39):14228–33.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 2007;67(10):4827–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Chiba T, Kita K, Zheng Y-W, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell–like properties. Hepatology. 2006;44(1):240–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, et al. Characterisation of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24(3):506–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S, et al. The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res. 2008;68(14):5658–68.CrossRefPubMedGoogle Scholar
  17. 17.
    Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K-i, Kiguchi K, et al. Clinical significance of side population in ovarian cancer cells. Hum Cell. 2011;24(1):9–12.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Choi YP, Shim HS, Gao M-Q, Kang S, Cho NH. Molecular portraits of intratumoral heterogeneity in human ovarian cancer. Cancer Lett. 2011;307(1):62–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Hu L, McArthur C, Jaffe RB. Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer. 2010;102(8):1276–83.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D, et al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther. 2011;10(2):325–35.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Gao Q, Geng L, Kvalheim G, Gaudernack G, Suo Z. Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3. Ultrastruct Pathol. 2009;33(4):175–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Dou J, Jiang C, Wang J, Zhang X, Zhao F, Hu W, et al. Using ABCG2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biol Int. 2011;35(3):227–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A. 2006;103(30):11154–9.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Golebiewska A, Brons NH, Bjerkvig R, Niclou SP. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell. 2011;8(2):136–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Kobayashi Y, Seino K, Hosonuma S, Ohara T, Itamochi H, Isonishi S, et al. Side population is increased in paclitaxel-resistant ovarian cancer cell lines regardless of resistance to cisplatin. Gynecol Oncol. 2011;121(2):390–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Tavaluc RT, Hart LS, Dicker DT, El-Deiry WS. Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines. Cell Cycle. 2007;6(20):2554–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Lee JP, Hahn HS, Hwang SJ, Choi JY, Park JS, Lee IH, et al. Selective cyclooxygenase inhibitors increase paclitaxel sensitivity in taxane-resistant ovarian cancer by suppressing P-glycoprotein expression. J Gynecol Oncol. 2013;24(3):273–9.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Zhang J, Zhao J, Zhang W, Liu G, Yin D, Li J, et al. Establishment of paclitaxel-resistant cell line and the underlying mechanism on drug resistance. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc. 2012;22(9):1450–6.Google Scholar
  29. 29.
    Chen J, Wang J, Zhang Y, Chen D, Yang C, Kai C, et al. Observation of ovarian cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional cell culture. J Biosci Bioeng. 2014 Mar 27.Google Scholar
  30. 30.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Johnatty SE, Beesley J, Gao B, Chen X, Lu Y, Law MH, et al. ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival: a comprehensive analysis from the Ovarian Cancer Association Consortium and The Cancer Genome Atlas. Gynecol Oncol. 2013;131(1):8–14.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378(9791):595–605.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Rachel Eyre
    • 1
  • Ian Harvey
    • 2
  • Katherine Stemke-Hale
    • 3
  • Thomas W. J. Lennard
    • 4
  • Alison Tyson-Capper
    • 1
  • Annette P. Meeson
    • 2
    • 5
    Email author
  1. 1.Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Institute of Genetic Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
  3. 3.Department of Systems BiologyUniversity of Texas MD Anderson Cancer CentreHoustonUSA
  4. 4.Northern Institute of Cancer Research, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
  5. 5.North East England Stem Cell Institute, Bioscience CentreInternational Centre for LifeNewcastle upon TyneUK

Personalised recommendations