Advertisement

Tumor Biology

, Volume 35, Issue 8, pp 7287–7291 | Cite as

Note of clarification of data in the meta-analysis of evidences on XPC polymorphisms and lung cancer susceptibility

  • Qiang Zhang
  • Ganzhong Wei
  • Xiaoming Wu
  • Ying Luo
Editorial
  • 603 Downloads

Dear Editor,

We read with great interest the paper [1]. The author conducted a meta-analysis of 13 case–control studies to estimate the association of Ala499Val, Lys939Gln, and PAT polymorphisms in XPC gene with lung cancer. His meta-analysis think that there is no significant association of these polymorphisms with lung cancer. It is a valuable study.

Nevertheless, careful examination of the data provided by the author (Table 1 in the original text) revealed some issues that are worth noticing. First, the ethnicity is inconsistent with the original studies. One study was a population-based case–control study of lung cancer in Xuan Wei, China [2]. And the other study examined variants in six NER genes (include XPC) in association with primary lung cancer risk among 113 Latino and 255 African American [3]. But they were used as Caucasian for data analysis. Second, the same text data referenced twice. There are two articles that have the same author, same writing time, exactly same case–control samples. After checking carefully the original article, we found they are two versions of an article, a publication in Chinese journal [4], the other is included in the foreign journal [5].
Table 1

The distribution of the XPC variant for cases and controls (original text)

Author

Publication year

Case

Control

P a

Population

Lys939Gln

A/A

A/C

C/C

A/A

A/C

C/C

  

 Sakoda LC

2012

263

379

100

520

739

218

0.088

Caucasian

 Chang JS

2008

46

55

11

151

121

26

0.162

African

 Chang JS

2008

143

90

22

132

116

26

0.944

Latino

 Raaschou-Nielsen O

2008

159

195

73

305

388

96

0.105

Caucasian

 Bai Y

2007

390

459

142

404

465

123

0.544

Asian

 Hu ZB

2005

126

154

40

141

152

29

0.184

Asian

 Shen M

2005

43

50

21

39

58

8

0.031

Asian

 Vogel U

2005

100

113

43

115

116

38

0.321

Caucasian

Ala499Val

C/C

C/T

T/T

C/C

C/T

T/T

  

 Sakoda LC

2012

401

299

43

822

566

87

0.421

Caucasian

 Bai Y

2007

452

435

107

446

456

88

0.060

Asian

 Hu ZB

2005

124

171

25

158

145

19

0.055

Asian

 Shen M

2005

56

47

13

50

47

13

0.702

Asian

 Lee GY

2005

28

184

220

31

187

214

0.252

Asian

a P value for Hardy–Weinberg equilibrium in control group

Therefore, we reassessed the association between XPC Ala499Val, Lys939Gln polymorphisms, and lung cancer (result in Table 2). In addition, we update with a new article [6] about the association between Lys939Gln polymorphisms and lung cancer, and another hotspot PAT polymorphism which is in XPC gene to our meta-analysis (Table 3) [7, 8, 9, 10, 11, 12, 13, 14]. Though the Table 4 showed that there was no significant difference for association of XPC Ala499Val polymorphisms with lung cancer under the additive model, dominant model, and recessive model. However, there was an association of PAT polymorphisms with lung cancer in Caucasian which was under recessive model (OR = 1.307; 95 % confidence interval (CI), 1.037~1.648; p = 0.023) (Fig. 1). The people with Glu/Glu had more inflexibility compared with the Lys-carriers, according to the recessive model (OR = 1.257; 95 % CI, 1.038~1.522; p = 0.013) (Fig. 2).
Table 2

ORs and 95 % CI for skin cancer and XPC polymorphisms under different genetic models

SNP

Type of ethnicity

Genetic model

Additive

Recessive

Dominant

OR [95 % CI] P b

P 1 c

P 2 d

OR [95 % CI] P b

P 1 c

P 2 d

OR [95 % CI] P b

P 1 c

P 2 d

939A>C

Caucasian

1.044 [0.950~1.148] 0.373

0.229

0.602

1.102 [0.916~1.325] 0.304

0.055

0.602

1.037 [0.906~1.187] 0.600

0.700

0.117

Asian

1.069 [0.972~1.175] 0.168

0.385

0.497

0.019 [1.038~1.522] 0.019

0.263

0.174

1.021 [0.895~1.165] 0.759

0.362

1.000

Othersa

0.968 [0.787~1.192] 0.762

0.032

0.317

0.986 [0.619~1.571] 0.954

0.628

0.317

0.952 [0.728~1.245] 0.720

0.013

0.317

Total

1.048 [0.983~1.117] 0.151

0.186

0.273

1.159 [1.020~1.317] 0.023

0.183

0.100

1.020 [0.933~1.115] 0.665

0.239

0.273

499C>T

Caucasian

1.044 [0.905~1.205] 0.552

0.980 [0.673~1.428] 0.916

1.074 [0.899~1.282] 0.432

Asian

1.077 [0.976~1.188] 0.141

0.260

1.141 [0.949~1.371] 0.159

0.778

1.078 [0.936~1.243] 0.298

0.101

Total

1.066 [0.983~1.156] 0.121

0.388

0.624

1.108 [0.940~1.307] 0.222

0.809

1.000

1.076 [0.964~1.203] 0.192

0.183

0.327

CI confidence interval

aThe others include Latino and African American

bValue for OR

cValue for heterogeneity test

dValue for Begg’s test (publication bias)

Table 3

The distribution of the XPC variant for cases and controls (updated)

Author

Publication year

Case

Control

P a

Population

Lys939Gln

A/A

A/C

C/C

A/A

A/C

C/C

  

 Sakoda LC

2012

263

379

100

520

739

218

0.088

Caucasian

 Chang JS

2008

46

55

11

151

121

26

0.162

African

 Chang JS

2008

143

90

22

132

116

26

0.944

Latino

 Raaschou-Nielsen O

2008

159

195

73

305

388

96

0.105

Caucasian

 Bai Y

2007

390

459

142

404

465

123

0.544

Asian

 Hu ZB

2005

126

154

40

141

152

29

0.184

Asian

 Shen M

2005

43

50

21

39

58

8

0.031

Asian

 Vogel U

2005

100

113

43

115

116

38

0.321

Caucasian

 L. Letkova

2013

28

61

22

55

77

21

0.467

Caucasian

PAT

−/−

+/−

+/+

−/−

+/−

+/+

  

 Wang YG

2003

251

279

67

193

253

63

0.152

Asian

 M Felicitas López-Cima1

2007

172

243

101

190

259

84

0.784

Caucasian

 Kim De Ruycka

2007

35

59

16

35

53

21

0.907

Caucasian

 M. Soledad Marı’n

2004

110

175

74

132

190

53

0.242

Caucasian

a P value for Hardy–Weinberg equilibrium in control group

Table 4

ORs and 95 % CI for skin cancer and XPC polymorphisms under different genetic models

SNP

Type of ethnicity

Genetic model

Additive

Recessive

Dominant

OR [95 % CI] P b

P 1 c

P 2 d

OR [95 % CI] P b

P 1 c

P 2 d

OR [95 % CI] P b

P 1 c

P 2 d

939A>C

Caucasian

1.024 [0.94~1.115] 0.59

0.284

0.497

1.13 [0.946~1.349] 0.177

0.08

0.497

1.067 [0.936~1.217] 0.333

0.324

0.042

Asian

1.069 [0.972~1.175] 0.168

0.385

0.497

0.019 [1.038~1.522] 0.019

0.263

0.174

1.021 [0.895~1.165] 0.759

0.362

1.000

Othersa

0.968 [0.787~1.192] 0.762

0.032

0.317

0.986 [0.619~1.571] 0.954

0.628

0.317

0.952 [0.728~1.245] 0.720

0.013

0.317

Total

1.037 [0.967~1.102] 0.239

0.196

0.243

1.257 [1.038~1.522] 0.013

0.209

0.102

1.034 [0.947~1.128] 0.462

0.134

0.1.2

PAT

Caucasian

1.149 [1.014~1.303] 0.3

0.347

1.307 [1.037~1.648] 0.023

0.158

1.14 [0.947~1.372] 0.168

0.801

Asian

0.892 [0.749~1.061] 0.197

0.895 [0.62~1.291] 0.553

0.842 [0.661~1.072] 0.163

Total

1.054 [0.952~1.167] 0.314

0.058

1.000

1.173 [0.965~1.427] 0.109

0.085

1.000

1.018 [0.879~1.18] 0.807

0.238

0.734

CI confidence interval

aThe others include Latino and African American

bValue for OR

cValue for heterogeneity test

dValue for Begg’s test (publication bias)

Fig. 1

Association of PAT polymorphisms with lung cancer in Caucasian

Fig. 2

OR and % weight value among Asian, Caucasian, and other races

References

  1. 1.
    Liu C, Yin Q, Hu J, Li L, Zhang Y, Wang Y. A meta-analysis of evidences on XPC polymorphisms and lung cancer susceptibility. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2013;34(2):1205–13. doi: 10.1007/s13277-013-0663-9.CrossRefGoogle Scholar
  2. 2.
    Shen M, Berndt SI, Rothman N, Demarini DM, Mumford JL, He X, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer J Int Cancer. 2005;116(5):768–73. doi: 10.1002/ijc.21117.CrossRefGoogle Scholar
  3. 3.
    Chang JS, Wrensch MR, Hansen HM, Sison JD, Aldrich MC, Quesenberry Jr CP, et al. Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer J Int Cancer. 2008;123(9):2095–104. doi: 10.1002/ijc.23801.CrossRefGoogle Scholar
  4. 4.
    Hu ZB, Wang YG, Ma HX, Tan W, Niu JY, Lin DX, et al. [Association of two exonic genetic polymorphisms in the DNA repair gene XPC with risk of lung cancer in Chinese population]. Zhonghua yi xue yi chuan xue za zhi Chin J Med Genet. 2005;22(4):415–8.Google Scholar
  5. 5.
    Hu Z, Wang Y, Wang X, Liang G, Miao X, Xu Y, et al. DNA repair gene XPC genotypes/haplotypes and risk of lung cancer in a Chinese population. Int J Cancer J Int Cancer. 2005;115(3):478–83. doi: 10.1002/ijc.20911.CrossRefGoogle Scholar
  6. 6.
    Letkova L, Matakova T, Musak L, Sarlinova M, Krutakova M, Slovakova P, et al. DNA repair genes polymorphism and lung cancer risk with the emphasis to sex differences. Mol Biol Rep. 2013;40(9):5261–73. doi: 10.1007/s11033-013-2626-z.PubMedCrossRefGoogle Scholar
  7. 7.
    Lopez-Cima MF, Gonzalez-Arriaga P, Garcia-Castro L, Pascual T, Marron MG, Puente XS, et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer. 2007;7:162. doi: 10.1186/1471-2407-7-162.PubMedCrossRefGoogle Scholar
  8. 8.
    De Ruyck K, Szaumkessel M, De Rudder I, Dehoorne A, Vral A, Claes K, et al. Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res. 2007;631(2):101–10. doi: 10.1016/j.mrgentox.2007.03.010.PubMedCrossRefGoogle Scholar
  9. 9.
    Marin MS, Lopez-Cima MF, Garcia-Castro L, Pascual T, Marron MG, Tardon A. Poly (AT) polymorphism in intron 11 of the XPC DNA repair gene enhances the risk of lung cancer. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2004;13(11 Pt 1):1788–93.Google Scholar
  10. 10.
    Wang YG, Xing DY, Tan W, Wang LJ, Tang PZ, Lin DX. [Poly(AT) polymorphism in DNA repair gene XPC and lung cancer risk]. Zhonghua zhong liu za zhi Chin J Oncol. 2003;25(6):555–7.Google Scholar
  11. 11.
    Bai Y, Xu L, Yang X, Hu Z, Yuan J, Wang F, et al. Sequence variations in DNA repair gene XPC is associated with lung cancer risk in a Chinese population: a case-control study. BMC Cancer. 2007;7:81. doi: 10.1186/1471-2407-7-81.
  12. 12.
    Vogel U, Overvad K, Wallin H, Tjonneland A, Nexo BA, Raaschou-Nielsen O. Combinations of polymorphisms in XPD, XPC and XPA in relation to risk of lung cancer. Cancer Letters. 2005;222(1):67–74. doi: 10.1016/j.canlet.2004.11.016.
  13. 13.
    Raaschou-Nielsen O, Sorensen M, Overvad K, Tjonneland A, Vogel U. Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer. Lung Cancer. 2008;59(2):171–9. doi: 10.1016/j.lungcan.2007.08.018.
  14. 14.
    Sakoda LC, Loomis MM, Doherty JA, Julianto L, Barnett MJ, Neuhouser ML, et al. Germ line variation in nucleotide excision repair genes and lung cancer risk in smokers. IJMEG. 2012;3(1):1–17. Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Qiang Zhang
    • 1
  • Ganzhong Wei
    • 2
  • Xiaoming Wu
    • 2
  • Ying Luo
    • 2
  1. 1.Lab of Molecular Genetics of Aging & Tumor, Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
  2. 2.Lab of Molecular Genetics of Aging & Tumor, Faculty of MedicalKunming University of Science and TechnologyKunmingChina

Personalised recommendations