Tumor Biology

, Volume 36, Issue 2, pp 701–709 | Cite as

RETRACTED ARTICLE: Prognostic value of CD133 expression in cancer patients treated with chemoradiotherapy: a meta-analysis

  • Jin-Hai Zhai
  • Wen-Chao Gu
  • Xiao-Lin Xu
  • Jiang Wu
  • Xue-Jun Hu
  • Ke-Zhu Hou
Research Article


Many studies evaluated the correlations of CD133 expression with the clinical outcomes in patients treated with chemoradiotherapy (CRT) but yielded controversial results. This meta-analysis was performed to identify the impacts of CD133 expression on the prognosis of cancer patients treated with CRT. Electronic databases updated up to March 2014 were searched to find relevant studies. Relevant literatures without any language restrictions were searched via electronic databases as follows: Web of Science (1945 ~ 2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966 ~ 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013). STATA software was used for the current meta-analysis. Hazard ratios (HR) and its corresponding 95 % confidence interval (95 % CI) were calculated. Six studies were identified with a total of 470 cancer patients treated with CRT. The meta-analysis results showed that CD133-positive patients had poorer overall survival (OS) than that of CD133-negative patients (HR = 2.13, 95 % CI = 1.20 ~ 3.07, P < 0.001). Furthermore, CD133-positive patients displayed shorter disease-free survival (DFS) than that of CD133-negative patients (HR = 1.74, 95 % CI = 0.08 ~ 3.40, P = 0.039). Ethnicity-stratified analysis indicated that CD133 expression positively correlated with shorter OS among the Japanese, Chinese, and Spanish populations (all P < 0.05). In conclusion, our findings suggest that CD133 expression may be positively correlated with poorer prognosis in cancer patients treated with CRT.


CD133 Prognosis value Cancer Chemoradiotherapy Meta-analysis 



The authors would like to acknowledge the reviewers for their helpful comments on this paper.

Conflicts of interest

The authors have declared that no competing interests exist.


  1. 1.
    Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol. 2012;13(8):790–801.CrossRefPubMedGoogle Scholar
  2. 2.
    Lang C, Maschauer S, Hubner H, Gmeiner P, Prante O. Synthesis and evaluation of a (18)F-labeled diarylpyrazole glycoconjugate for the imaging of NTS1-positive tumors. J Med Chem. 2013;56(22):9361–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. 2012Google Scholar
  4. 4.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen AB, Cronin A, Weeks JC, Chrischilles EA, Malin J, Hayman JA, et al. Palliative radiation therapy practice in patients with metastatic non-small-cell lung cancer: a Cancer Care Outcomes Research and Surveillance Consortium (CanCORS) Study. J Clin Oncol. 2013;31(5):558–64.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gille TM, Miles EF, Mitchell AO. Lymphoepithelioma-like carcinoma of the skin treated with wide local excision and chemoradiation therapy: a case report and review of the literature. Case Rep Oncol Med. 2012;2012:241816.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Hartley A, Ho KF, McConkey C, Geh JI. Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of phase II/III trials. Br J Radiol. 2005;78(934):934–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu H, Huang PY, Tang LQ, Chen QY, Zhang Y, Zhang L, et al. Functional polymorphisms of matrix metalloproteinase-9 and survival in patients with locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy. Med Oncol. 2013;30(4):685.CrossRefPubMedGoogle Scholar
  10. 10.
    Casado E, Garcia VM, Sanchez JJ, Gomez Del Pulgar MT, Feliu J, Maurel J, et al. Upregulation of trefoil factor 3 (TFF3) after rectal cancer chemoradiotherapy is an adverse prognostic factor and a potential therapeutic target. Int J Radiat Oncol Biol Phys. 2012;84(5):1151–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Koike Y, et al. Clinical significance of CD133 and hypoxia inducible factor-1alpha gene expression in rectal cancer after preoperative chemoradiotherapy. Clin Oncol (R Coll Radiol). 2011;23(5):323–32.CrossRefGoogle Scholar
  12. 12.
    Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138(6):2151–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.CrossRefPubMedGoogle Scholar
  14. 14.
    Kojima M, Ishii G, Atsumi N, Nishizawa Y, Saito N, Ochiai A. CD133 expression in rectal cancer after preoperative chemoradiotherapy. Cancer Sci. 2010;101(4):906–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120(7):1444–50.CrossRefPubMedGoogle Scholar
  16. 16.
    O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007;43(5):935–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Jao SW, Chen SF, Lin YS, Chang YC, Lee TY, Wu CC, et al. Cytoplasmic CD133 expression is a reliable prognostic indicator of tumor regression after neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Ann Surg Oncol. 2012;19(11):3432–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Lin CH, Chen WT, Liu CH, Tsai HP, Wu CC, Chai CY. Increased CD133 expression after preoperative chemoradiotherapy in rectal cancers other than mucin-rich tumors. Virchows Arch. 2012;460(5):447–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Hongo K, Kazama S, Sunami E, Tsuno NH, Takahashi K, Nagawa H, et al. Immunohistochemical detection of CD133 is associated with tumor regression grade after chemoradiotherapy in rectal cancer. Med Oncol. 2012;29(4):2849–57.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125(3):717–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Ioue Y, et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol. 2009;16(12):3488–98.CrossRefPubMedGoogle Scholar
  26. 26.
    Yasuda H, Tanaka K, Saigusa S, Toiyama Y, Koike Y, Okugawa Y, et al. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep. 2009;22(4):709–17.PubMedGoogle Scholar
  27. 27.
    Fehrman-Ekholm I, Seeberger A, Bjork J, Sterner G. Serum cystatin C: a useful marker of kidney function in very old people. Scand J Clin Lab Invest. 2009;69(5):606–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Horst D, Kriegl L, Engel J, Jung A, Kirchner T. CD133 and nuclear beta-catenin: the marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer. 2009;45(11):2034–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Shien K, Toyooka S, Ichimura K, Soh J, Furukawa M, Maki Y, et al. Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer. 2012;77(1):162–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Zintzaras E, Ioannidis JP. HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics. 2005;21(18):3672–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295(6):676–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Garcia VM, Batlle JF, Casado E, Burgos E, de Castro J, Belda C, et al. Immunohistochemical analysis of tumour regression grade for rectal cancer after neoadjuvant chemoradiotherapy. Colorectal Dis. 2011;13(9):989–98.CrossRefPubMedGoogle Scholar
  34. 34.
    Choi D, Lee HW, Hur KY, Kim JJ, Park GS, Jang SH, et al. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol. 2009;15(18):2258–64.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.CrossRefPubMedGoogle Scholar
  36. 36.
    Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8(7):545–54.CrossRefPubMedGoogle Scholar
  37. 37.
    Rich JN. Cancer stem cells in radiation resistance. Cancer Res. 2007;67(19):8980–4.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Jin-Hai Zhai
    • 1
  • Wen-Chao Gu
    • 2
  • Xiao-Lin Xu
    • 3
  • Jiang Wu
    • 1
  • Xue-Jun Hu
    • 1
  • Ke-Zhu Hou
    • 4
  1. 1.GI MedicineWuxi TCM HospitalWuxiChina
  2. 2.Department of Respiratory MedicineShanghai Pudong New Area People’ s HospitalShanghaiChina
  3. 3.Department of Cardiothoracic Surgery, Huashan HospitalFudan UniversityShanghaiChina
  4. 4.Department of First General SurgeryShi Dong HospitalShanghaiChina

Personalised recommendations