Tumor Biology

, Volume 35, Issue 10, pp 9619–9625 | Cite as

Expression and clinicopathological significance of Mel-18 mRNA in colorectal cancer

  • Ji Tao
  • Yan-Long Liu
  • Gan Zhang
  • Yu-Yan Ma
  • Bin-Bin Cui
  • Yan-Mei Yang
Research Article


Mel-18 is a member of the polycomb group (PcG) of proteins, which are chromatin regulatory factors that play an important role in oncogenesis. This study was designed to investigate the clinical and prognostic significance of Mel-18 in colorectal cancer (CRC) patients. For this purpose, expression of Mel-18 mRNA was evaluated in 82 primary CRC and paired noncancerous mucosa samples by qRT-PCR and Western blotting. We found that overall Mel-18 mRNA expression in the CRC tissue was significantly lower than in the noncancerous mucosal tissue (p = 0.007, Wilcoxon matched-pairs signed-ranks test). Mel-18 was conversely correlated with the pathological classifications (p = 0.003 for T, p < 0.001 for N, and p = 0.015 for M classifications, respectively) and clinical AJCC stage (p < 0.001). Furthermore, CRC patients with a higher level of Mel-18 showed prolonged disease-free survivals (DFS) (p < 0.001). In multivariate analysis, the diminished Mel-18 expression may be a risk factor for the patients’ 3-year DFS (HR = 1.895; 95 % CI 1.032, 3.477; p = 0.039). It was therefore concluded that the lower Mel-18 expression might contribute to the CRC development/progression.


Mel-18 Bmi-1 c-Myc Colorectal cancer 



This study was supported by NCFC (30972561), Heilongjiang Postdoctoral Fund (LBH-Z12155), and Hospital Research Foundation (JJZ2011-01).


  1. 1.
    Merika E, Saif MW, Katz A, Syrigos K, Morse M. Review. Colon cancer vaccines: an Update In vivo. 2010;24:607–28.PubMedGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer J Int Du Cancer. 2010;127:2893–917.CrossRefGoogle Scholar
  3. 3.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81:303–11.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Piunti A, Pasini D. Epigenetic factors in cancer development: polycomb group proteins. Future Oncol. 2011;7:57–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Lin YW, Chen HM, Fang JY. Gene silencing by the polycomb group proteins and associations with cancer. Cancer Investig. 2011;29:187–95.CrossRefGoogle Scholar
  7. 7.
    Richly H, Aloia L, Di Croce L. Roles of the polycomb group proteins in stem cells and cancer. Cell Death Dis. 2011;2:e204.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS. Hierarchical recruitment of polycomb group silencing complexes. Mol Cell. 2004;14:637–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in polycomb silencing. Nature. 2004;431:873–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005;20:845–54.CrossRefPubMedGoogle Scholar
  11. 11.
    de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell. 2004;7:663–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Cao W, Ribeiro Rde O, Liu D, Saintigny P, Xia R, Xue Y, et al. EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer. PLoS One. 2012;7:e52984.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Yin T, Wei H, Leng Z, Yang Z, Gou S, Wu H, et al. Bmi-1 promotes the chemoresistance, invasion and tumorigenesis of pancreatic cancer cells. Chemotherapy. 2011;57:488–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Wolters T, Vissers KJ, Bangma CH, Schroder FH, van Leenders GJ. The value of EZH2, p27(kip1), BMI-1 and MIB-1 on biopsy specimens with low-risk prostate cancer in selecting men with significant prostate cancer at prostatectomy. BJU Int. 2010;106:280–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Balasubramanian S, Lee K, Adhikary G, Gopalakrishnan R, Rorke EA, Eckert RL. The Bmi-1 polycomb group gene in skin cancer: regulation of function by (-)-epigallocatechin-3-gallate. Nutr Rev. 2008;66 Suppl 1:S65–68.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Zhang XW, Sheng YP, Li Q, Qin W, Lu YW, Cheng YF, et al. Bmi1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer. 2010;9:40.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Tagawa M, Sakamoto T, Shigemoto K, Matsubara H, Tamura Y, Ito T, et al. Expression of novel DNA-binding protein with zinc finger structure in various tumor cells. J Biol Chem. 1990;265:20021–6.PubMedGoogle Scholar
  18. 18.
    Dukers DF, van Galen JC, Giroth C, Jansen P, Sewalt RG, Otte AP, et al. Unique polycomb gene expression pattern in Hodgkin’s lymphoma and Hodgkin’s lymphoma-derived cell lines. Am J Pathol. 2004;164:873–81.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Wiederschain D, Chen L, Johnson B, Bettano K, Jackson D, Taraszka J, et al. Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol Cell Biol. 2007;27:4968–79.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Guo WJ, Datta S, Band V, Dimri GP. Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol Biol Cell. 2007;18:536–46.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Silva J, Garcia JM, Pena C, Garcia V, Dominguez G, Suarez D, et al. Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin Cancer Res. 2006;12:6929–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Riis ML, Luders T, Nesbakken AJ, Vollan HS, Kristensen V, Bukholm IR. Expression of BMI-1 and Mel-18 in breast tissue—a diagnostic marker in patients with breast cancer. BMC Cancer. 2010;10:686.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Guo BH, Zhang X, Zhang HZ, Lin HL, Feng Y, Shao JY, et al. Low expression of Mel-18 predicts poor prognosis in patients with breast cancer. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2010;21:2361–9.CrossRefGoogle Scholar
  24. 24.
    Lu YW, Li J, Guo WJ. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma. J Exp Clin Cancer Res: CR. 2010;29:143.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Wang W, Lin T, Huang J, Hu W, Xu K, Liu J. Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features. Urol Oncol. 2011;29:244–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang W, Yuasa T, Tsuchiya N, Ma Z, Maita S, Narita S, et al. The novel tumor-suppressor Mel-18 in prostate cancer: its functional polymorphism, expression and clinical significance. Int J Cancer J Int Du Cancer. 2009;125:2836–43.CrossRefGoogle Scholar
  27. 27.
    Lee JY, Jang KS, Shin DH, Oh MY, Kim HJ, Kim Y, et al. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res. 2008;68:4201–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Fluge O, Gravdal K, Carlsen E, Vonen B, Kjellevold K, Refsum S, et al. Norwegian Gastrointestinal Cancer G: Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br J Cancer. 2009;101:1282–9.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kim JH, Yoon SY, Kim CN, Joo JH, Moon SK, Choe IS, et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett. 2004;203:217–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Li DW, Tang HM, Fan JW, Yan DW, Zhou CZ, Li SX, et al. Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer. J Cancer Res Clin Oncol. 2010;136:997–1006.CrossRefPubMedGoogle Scholar
  31. 31.
    Cui B, Tao J, Yang Y. Studies on the expression patterns of class I PI3K catalytic subunits and its prognostic significance in colorectal cancer. Cell Biochem Biophys. 2012;62:47–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Sanchez-Beato M, Sanchez E, Gonzalez-Carrero J, Morente M, Diez A, Sanchez-Verde L, et al. Variability in the expression of polycomb proteins in different normal and tumoral tissues. A pilot study using tissue microarrays. Mod Pathol. 2006;19:684–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Kanno M, Hasegawa M, Ishida A, Isono K, Taniguchi M. Mel-18, a polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. EMBO J. 1995;14:5672–8.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Alkema MJ, Wiegant J, Raap AK, Berns A, van Lohuizen M. Characterization and chromosomal localization of the human proto-oncogene Bmi-1. Hum Mol Genet. 1993;2:1597–603.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen C, Cai S, Wang G, Cao X, Yang X, Luo X, et al. C-Myc enhances colon cancer cell-mediated angiogenesis through the regulation of HIF-1alpha. Biochem Biophys Res Commun. 2013;430:505–11.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Medical Oncology, the Affiliated Tumor HospitalHarbin Medical UniversityHarbinChina
  2. 2.Department of Colorectal Surgery, the Affiliated Tumor HospitalHarbin Medical UniversityHarbinChina
  3. 3.Cancer Research InstituteHarbin Medical UniversityHarbinChina

Personalised recommendations