Advertisement

Tumor Biology

, Volume 35, Issue 10, pp 9661–9666 | Cite as

Upregulation of plasmacytoid dendritic cells in glioma

  • Rui Wang
  • Ju-Liang Zhang
  • Bo Wei
  • Yu Tian
  • Zhao-Hui Li
  • Le Wang
  • Chao Du
Research Article

Abstract

The immune system fails to eradicate established tumors partly due to the induction of immune tolerance within tumor microenvironment. Plasmacytoid dendritic cells (pDCs) play critical roles in regulating immune system. In this study, we investigated pDC in the peripheral blood of glioma. CD4 + CD123 + BDCA2+ pDCs were tested from peripheral blood mononuclear cells in 40 glioma patients and 40 healthy controls by flow cytometry. The results revealed that proportion of pDCs was significantly increased in cases than in controls (0.52 ± 0.07 versus 0.21 ± 0.02 %, p < 0.001), whereas myeloid dendritic cells (mDCs) did not present any obvious difference between patients and healthy donors (0.25 ± 0.04 versus 0.18 ± 0.02 %, p = 0.217). We further studied pDCs in glioma patients with different clinical stages. Data showed that cases with smoking history had elevated level of pDCs than those non-smoker patients (0.91 ± 0.16 versus 0.48 ± 0.06 %, p = 0.004). Interestingly, we observed that patients with aphasia presented significantly elevated pDCs than those without aphasia (0.93 ± 0.12 versus 0.41 ± 0.07 %, p < 0.001). These data suggested that pDCs may be closely involved in the pathogenesis of glioma and may play roles in certain symptoms of the disease.

Keywords

Plasmacytoid dendritic cells Aphasia Glioma 

Notes

Conflicts of interest

None

References

  1. 1.
    Han S, Feng S, Yuan G, Dong T, Gao D, et al. Lysyl oxidase genetic variants and the prognosis of glioma. APMIS. 2014;122:200–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Bashir T, Cloninger C, Artinian N, Anderson L, Bernath A, et al. Conditional astroglial Rictor overexpression induces malignant glioma in mice. PLoS One. 2012;7:e47741.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Robinson JP, VanBrocklin MW, Guilbeault AR, Signorelli DL, Brandner S, et al. Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation. Oncogene. 2010;29:335–44.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Zen M, Canova M, Campana C, Bettio S, Nalotto L, et al. The kaleidoscope of glucocorticoid effects on immune system. Autoimmun Rev. 2011;10:305–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang HG, Grizzle WE. Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res. 2011;17:959–64.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Yu XH, Jiang N, Zheng XL, Cayabyab FS, Tang ZB, et al. Interleukin-17A in lipid metabolism and atherosclerosis. Clin Chim Acta. 2014;431C:33–9.CrossRefGoogle Scholar
  7. 7.
    Yuan X, Wei Q, Komaki R, Liu Z, Yang J, et al. Polymorphisms predict distant metastasis-free survival in patients with inoperable non-small-cell lung cancer after definitive radiotherapy. PLoS One. 2013;8:e65659.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Yang S, Wang C, Zhou Y, Sun G, Zhu D, et al. Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to Ewing’s sarcoma. Genet Test Mol Biomark. 2012;16:1236–40.CrossRefGoogle Scholar
  9. 9.
    Yu H, Zou X, Peng L, Wang Y, Zhang C, et al. Effect of soluble inducible costimulator level and its polymorphisms on age-related macular degeneration. DNA Cell Biol. 2013;32:717–21.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Xiang H, Zhao W, Sun Y, Qian W, Xing J, et al. CD86 gene variants and susceptibility to pancreatic cancer. J Cancer Res Clin Oncol. 2012;138:2061–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Xu P, Chen YJ, Chen H, Zhu XY, Song HF, et al. The expression of programmed death-1 in circulating CD4+ and CD8+ T cells during hepatitis B virus infection progression and its correlation with clinical baseline characteristics. Gut Liver. 2014;8:186–95.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Yamahira A, Narita M, Nakamura T, Watanabe N, Kaji M, et al. Generation of antigen-specific cytotoxic T lymphocytes using a leukemic plasmacytoid dendritic cell line as antigen presenting cells. Leuk Res. 2011;35:793–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Wei L, Liu B, Tuo J, Shen D, Chen P, et al. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep. 2012;2:1151–8.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, et al. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity. 2011;35:945–57.CrossRefPubMedGoogle Scholar
  15. 15.
    Wergeland I, Assmus J, Dyrhol-Riise AM. T regulatory cells and immune activation in Mycobacterium tuberculosis infection and the effect of preventive therapy. Scand J Immunol. 2011;73:234–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Adachi K, Davis MM. T-cell receptor ligation induces distinct signaling pathways in naive vs. antigen-experienced T cells. Proc Natl Acad Sci U S A. 2011;108:1549–54.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res. 2014;114:1640–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15:e257–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Dietel B, Muench R, Kuehn C, Kerek F, Steinkasserer A, et al. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression. Atherosclerosis. 2014;235:263–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Dubrot J, Duraes FV, Potin L, Capotosti F, Brighouse D, et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. J Exp Med. 2014;211:1153–66.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Shi W, Li X, Porter JL, Ostrodi DH, Yang B, et al. Level of plasmacytoid dendritic cells is increased in non-small cell lung carcinoma. Tumour Biol. 2014;35:2247–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Green TL, Santos MF, Ejaeidi AA, Craft BS, Lewis RE, et al. Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol. 2014;97:44–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Tel J, Hato SV, Torensma R, Buschow SI, Figdor CG, et al. The chemotherapeutic drug oxaliplatin differentially affects blood DC function dependent on environmental cues. Cancer Immunol Immunother. 2012;61:1101–11.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Troegeler A, Lastrucci C, Duval C, Tanne A, Cougoule C, et al. (2014) An efficient siRNA-mediated gene silencing in primary human monocytes, dendritic cells and macrophages. Immunol Cell Biol.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Rui Wang
    • 1
  • Ju-Liang Zhang
    • 2
  • Bo Wei
    • 3
  • Yu Tian
    • 3
  • Zhao-Hui Li
    • 3
  • Le Wang
    • 4
  • Chao Du
    • 3
  1. 1.Department of RadiologyChina-Japan Union Hospital of Jilin UniversityChangchunChina
  2. 2.Department of Vascular and Endocrine SurgeryXijing Hospital, The Fourth Military Medical UniversityXi’an, Shaanxi ProvinceChina
  3. 3.Department of NeurosurgeryChina-Japan Union Hospital of Jilin UniversityChangchunChina
  4. 4.Department of OphthalmologyChina-Japan Union Hospital of Jilin UniversityChangchunChina

Personalised recommendations