Tumor Biology

, Volume 36, Issue 3, pp 1429–1435 | Cite as

Clinicopathological significance of steroidogenic factor-1 expression in ovarian cancer versus ovarian sex cord stromal tumor

  • Zhuo-ying Hu
  • Liang-dan Tang
  • Hong-yu Zhang
  • Jing-ya Niu
  • Meng Lou
Research Article

Abstract

The significance of steroidogenic factor-1 (SF-1) in human ovarian tumor has not been fully investigated. The purposes of this study are to provide a meta-analysis for SF-1 and to determine whether SF-1 is associated with ovarian tumor progression and clinicopathological characteristics. A detailed literature search was made for related research publications written in English. Methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analysis of pooled data was performed, and odds ratio (OR) and corresponding confidence intervals (CIs) were calculated and summarized respectively. Final analysis from seven eligible studies was performed. Aberrant SF-1 expression was significantly lower in ovarian cancer compared to that of normal ovarian tissue (OR = 0.02, 95 % CI = 0.00–0.16, p = 0.0002). However, SF-1 protein expression was not significantly different between benign and malignant ovarian tumors (p = 0.35). Interestingly, aberrant SF-1 expression was significantly higher in ovarian sex cord stromal tumors than that of ovarian cancer (OR = 0.00, 95 % CI = 0.00–0.01, p < 0.00001). The results of this meta-analysis suggest that SF-1 may play an important role in ovarian cancer initiation and progression. Moreover, SF-1 expression may serve as a marker in the differential diagnosis between ovarian sex cord stromal tumors and ovarian cancer.

Keywords

Ovarian tumor Steroidogenic factor-1 Meta-analysis Diagnosis 

Notes

Acknowledgments

This work was funded by Natural Science Foundation in Chongqing City Health Bureau (No2012-2-015).

References

  1. 1.
    Ovarian, cancer, national, alliance (2013) http://www.ovariancancer.org/about-ovarian-cancer/statistics/.
  2. 2.
    Leung PC, Choi JH. Endocrine signaling in ovarian surface epithelium and cancer. Hum Reprod Update. 2007;13:143–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Foley OW, Rauh-Hain JA, del Carmen MG. Recurrent epithelial ovarian cancer: an update on treatment. Oncology (Williston Park). 2013;27:288–94. 298.Google Scholar
  4. 4.
    Coleman RL, Monk BJ, Sood AK, Herzog TJ. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol. 2013;10:211–24.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Morohashi KI, Omura T. Ad4BP/SF-1, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function. FASEB J. 1996;10:1569–77.PubMedGoogle Scholar
  6. 6.
    Mizutani T, Ju Y, Imamichi Y, Osaki T, Yazawa T, et al. CCAAT/enhancer-binding protein beta (C/EBPbeta) mediates progesterone production through transcriptional regulation in cooperation with steroidogenic factor 1 (SF-1). Biochem J. 2014;18:18.Google Scholar
  7. 7.
    Jameson JL. Of mice and men: the tale of steroidogenic factor-1. J Clin Endocrinol Metab. 2004;89:5927–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Higgins JPT, Green S (2010) Cochrane handbook for systematic reviews of interventions version 5.0.2 (updated September 2009). The Cochrane Collaboration, Accessed 1 March 2009.Google Scholar
  9. 9.
    Bero L, Rennie D. The Cochrane Collaboration. Preparing, maintaining, and disseminating systematic reviews of the effects of health care. JAMA. 1995;274:1935–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Woodward M. Epidemiology: design and data analysis. 2nd ed. Boca Raton: Chapman and Hall/CRC Press; 2005.Google Scholar
  11. 11.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMedGoogle Scholar
  12. 12.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sasano H, Kaga K, Sato S, Yajima A, Nagura H. Adrenal 4-binding protein in common epithelial and metastatic tumors of the ovary. Hum Pathol. 1996;27:595–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Abd-Elaziz M, Moriya T, Akahira J, Nakamura Y, Suzuki T, et al. Immunolocalization of nuclear transcription factors, DAX-1 and Ad4BP/SF-1, in human common epithelial ovarian tumors: correlations with StAR and steroidogenic enzymes in epithelial ovarian carcinoma. Int J Gynecol Pathol. 2005;24:153–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Miller S, Bhasin N, Urrego H, Moroz K, Rowan BG, et al. Genetic and epigenetic alterations of steroidogenic factor1 in ovarian tumors. Int J Oncol. 2013;42:627–34.PubMedGoogle Scholar
  16. 16.
    Zhao C, Barner R, Vinh TN, McManus K, Dabbs D, et al. SF-1 is a diagnostically useful immunohistochemical marker and comparable to other sex cord-stromal tumor markers for the differential diagnosis of ovarian sertoli cell tumor. Int J Gynecol Pathol. 2008;27:507–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Chand AL, Pathirage N, Lazarus K, Chu S, Drummond AE, et al. Liver receptor homologue-1 expression in ovarian epithelial and granulosa cell tumours. Steroids. 2013;78:700–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Takayama K, Sasano H, Fukaya T, Morohashi K, Suzuki T, et al. Immunohistochemical localization of Ad4-binding protein with correlation to steroidogenic enzyme expression in cycling human ovaries and sex cord stromal tumors. J Clin Endocrinol Metab. 1995;80:2815–21.PubMedGoogle Scholar
  19. 19.
    Ishikura H, Sasano H. Histopathologic and immunohistochemical study of steroidogenic cells in the stroma of ovarian tumors. Int J Gynecol Pathol. 1998;17:261–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Cota GF, de Sousa MR, Fereguetti TO, Rabello A. Efficacy of anti-leishmania therapy in visceral leishmaniasis among HIV infected patients: a systematic review with indirect comparison. PLoS Negl Trop Dis. 2013;7:e2195.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nishina-Uchida N, Fukuzawa R, Numakura C, Suwanai AS, Hasegawa T, et al. Characteristic testicular histology is useful for the identification of NR5A1 gene mutations in prepubertal 46, XY patients. Horm Res Paediatr. 2013;80:119–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Hoivik EA, Bjanesoy TE, Bakke M. Epigenetic regulation of the gene encoding steroidogenic factor-1. Mol Cell Endocrinol. 2013;371:133–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang CY, Chen WY, Lai PY, Chung BC. Distinct functions of steroidogenic factor-1 (NR5A1) in the nucleus and the centrosome. Mol Cell Endocrinol. 2013;371:148–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Mello MP, Franca ES, Fabbri HC, Maciel-Guerra AT, Guerra-Junior G. Multifunctional role of steroidogenic factor 1 and disorders of sex development. Arq Bras Endocrinol Metabol. 2011;55:607–12.CrossRefPubMedGoogle Scholar
  25. 25.
    El-Khairi R, Achermann JC. Steroidogenic factor-1 and human disease. Semin Reprod Med. 2012;30:374–81.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Salvesen HB, Haldorsen IS, Trovik J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 2012;13:e353–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Parker KL, Rice DA, Lala DS, Ikeda Y, Luo X, et al. Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res. 2002;57:19–36.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol. 2010;315:27–39.CrossRefPubMedGoogle Scholar
  29. 29.
    Ferraz-de-Souza B, Lin L, Achermann JC. Steroidogenic factor-1 (SF-1, NR5A1) and human disease. Mol Cell Endocrinol. 2011;336:198–205.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lourenco D, Brauner R, Lin L, De Perdigo A, Weryha G, et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360:1200–10.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Martinerie L, Bouvattier C, Lombes M. SF-1, a key player in adrenal and gonadal differentiation: implications in gonadal dysgenesis and primary ovarian insufficiency. Ann Endocrinol (Paris). 2009;70 Suppl 1:S26–32.CrossRefGoogle Scholar
  32. 32.
    Warman DM, Costanzo M, Marino R, Berensztein E, Galeano J, et al. Three new SF-1 (NR5A1) gene mutations in two unrelated families with multiple affected members: within-family variability in 46, XY subjects and low ovarian reserve in fertile 46, XX subjects. Horm Res Paediatr. 2011;75:70–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Camats N, Pandey AV, Fernandez-Cancio M, Andaluz P, Janner M, et al. Ten novel mutations in the NR5A1 gene cause disordered sex development in 46, XY and ovarian insufficiency in 46, XX individuals. J Clin Endocrinol Metab. 2012;97:E1294–306.CrossRefPubMedGoogle Scholar
  34. 34.
    Ciaccio M, Costanzo M, Guercio G, De Dona V, Marino R, et al. Preserved fertility in a patient with a 46, XY disorder of sex development due to a new heterozygous mutation in the NR5A1/SF-1 gene: evidence of 46, XY and 46, XX gonadal dysgenesis phenotype variability in multiple members of an affected kindred. Horm Res Paediatr. 2012;78:119–26.CrossRefPubMedGoogle Scholar
  35. 35.
    Philibert P, Paris F, Lakhal B, Audran F, Gaspari L, et al. NR5A1 (SF-1) gene variants in a group of 26 young women with XX primary ovarian insufficiency. Fertil Steril. 2013;99:484–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Figueiredo BC, Cavalli LR, Pianovski MA, Lalli E, Sandrini R, et al. Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J Clin Endocrinol Metab. 2005;90:615–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Pianovski MA, Cavalli LR, Figueiredo BC, Santos SC, Doghman M, et al. SF-1 overexpression in childhood adrenocortical tumours. Eur J Cancer. 2006;42:1040–3.CrossRefPubMedGoogle Scholar
  38. 38.
    Almeida MQ, Soares IC, Ribeiro TC, Fragoso MC, Marins LV, et al. Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults. J Clin Endocrinol Metab. 2010;95:1458–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Sbiera S, Schmull S, Assie G, Voelker HU, Kraus L, et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J Clin Endocrinol Metab. 2010;95:E161–71.CrossRefPubMedGoogle Scholar
  40. 40.
    Kiiveri S, Liu J, Arola J, Heikkila P, Kuulasmaa T, et al. Transcription factors GATA-6, SF-1, and cell proliferation in human adrenocortical tumors. Mol Cell Endocrinol. 2005;233:47–56.CrossRefPubMedGoogle Scholar
  41. 41.
    Kaneko T, Kojima Y, Umemoto Y, Sasaki S, Hayashi Y, et al. Usefulness of transcription factors Ad4BP/SF-1 and DAX-1 as immunohistologic markers for diagnosis of advanced adrenocortical carcinoma. Horm Res. 2008;70:294–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Duregon E, Volante M, Giorcelli J, Terzolo M, Lalli E, et al. Diagnostic and prognostic role of steroidogenic factor 1 in adrenocortical carcinoma: a validation study focusing on clinical and pathologic correlates. Hum Pathol. 2013;44:822–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Lewis SR, Hedman CJ, Ziegler T, Ricke WA, Jorgensen JS. Steroidogenic factor 1 promotes aggressive growth of castration resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation. Endocrinology. 2013;155:358–69.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rae MT, Niven D, Ross A, Forster T, Lathe R, et al. Steroid signalling in human ovarian surface epithelial cells: the response to interleukin-1alpha determined by microarray analysis. J Endocrinol. 2004;183:19–28.CrossRefPubMedGoogle Scholar
  45. 45.
    Papacleovoulou G, Hogg K, Fegan KS, Critchley HO, Hillier SG, et al. Regulation of 3beta-hydroxysteroid dehydrogenase type 1 and type 2 gene expression and function in the human ovarian surface epithelium by cytokines. Mol Hum Reprod. 2009;15:379–92.CrossRefPubMedGoogle Scholar
  46. 46.
    Ivarsson K, Sundfeldt K, Brannstrom M, Janson PO. Production of steroids by human ovarian surface epithelial cells in culture: possible role of progesterone as growth inhibitor. Gynecol Oncol. 2001;82:116–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Okamura H, Katabuchi H, Ohba T. What we have learned from isolated cells from human ovary? Mol Cell Endocrinol. 2003;202:37–45.CrossRefPubMedGoogle Scholar
  48. 48.
    Lukanova A, Kaaks R. Endogenous hormones and ovarian cancer: epidemiology and current hypotheses. Cancer Epidemiol Biomarkers Prev. 2005;14:98–107.PubMedGoogle Scholar
  49. 49.
    Suga S, Kato K, Ohgami T, Yamayoshi A, Adachi S, et al. An inhibitory effect on cell proliferation by blockage of the MAPK/estrogen receptor/MDM2 signal pathway in gynecologic cancer. Gynecol Oncol. 2007;105:341–50.CrossRefPubMedGoogle Scholar
  50. 50.
    Wong AS, Leung PC. Role of endocrine and growth factors on the ovarian surface epithelium. J Obstet Gynaecol Res. 2007;33:3–16.CrossRefPubMedGoogle Scholar
  51. 51.
    Lala DS, Ikeda Y, Luo X, Baity LA, Meade JC, et al. A cell-specific nuclear receptor regulates the steroid hydroxylases. Steroids. 1995;60:10–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Morohashi K, Zanger UM, Honda S, Hara M, Waterman MR, et al. Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol Endocrinol. 1993;7:1196–204.PubMedGoogle Scholar
  53. 53.
    Michael MD, Kilgore MW, Morohashi K, Simpson ER. Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem. 1995;270:13561–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Mendelson CR, Jiang B, Shelton JM, Richardson JA, Hinshelwood MM. Transcriptional regulation of aromatase in placenta and ovary. J Steroid Biochem Mol Biol. 2005;95:25–33.CrossRefPubMedGoogle Scholar
  55. 55.
    Nash DM, Hess SA, White BA, Peluso JJ. Steroidogenic factor-1 regulates the rate of proliferation of normal and neoplastic rat ovarian surface epithelial cells in vitro. Endocrinology. 1998;139:4663–71.Google Scholar
  56. 56.
    Batsche E, Desroches J, Bilodeau S, Gauthier Y, Drouin J. Rb enhances p160/SRC coactivator-dependent activity of nuclear receptors and hormone responsiveness. J Biol Chem. 2005;280:19746–56.CrossRefPubMedGoogle Scholar
  57. 57.
    Tran PV, Akana SF, Malkovska I, Dallman MF, Parada LF, et al. Diminished hypothalamic bdnf expression and impaired VMH function are associated with reduced SF-1 gene dosage. J Comp Neurol. 2006;498:637–48.CrossRefPubMedGoogle Scholar
  58. 58.
    Ferraz-de-Souza B, Lin L, Shah S, Jina N, Hubank M, et al. ChIP-on-chip analysis reveals angiopoietin 2 (Ang2, ANGPT2) as a novel target of steroidogenic factor-1 (SF-1, NR5A1) in the human adrenal gland. FASEB J. 2011;25:1166–75.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zhuo-ying Hu
    • 1
  • Liang-dan Tang
    • 1
  • Hong-yu Zhang
    • 2
  • Jing-ya Niu
    • 1
  • Meng Lou
    • 1
  1. 1.Department of Obstetrics and GynecologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of General SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina

Personalised recommendations