Advertisement

Tumor Biology

, Volume 35, Issue 9, pp 9163–9169 | Cite as

H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT

  • Chenchao Ma
  • Kate Nong
  • Hongda Zhu
  • Weiwei Wang
  • Xinyu Huang
  • Zhou Yuan
  • Kaixing Ai
Research Article

Abstract

The long noncoding RNA (lncRNA) H19 has been recently characterized as an oncogenic lncRNA in some tumors. However, the role of H19 in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In this study, we found that not only the levels of H19 was overexpressed in PDAC compared with adjacent normal tissues, but also H19 expression was upregulated remarkably in primary tumors which subsequently metastasized, compared to those did not metastasis. Subsequently, the efficacy of knockdown of H19 by H19-small interfering RNA (siRNA) was evaluated in vitro, and we found that downregulation of H19 impaired PDAC cell invasion and migration. We further demonstrated that H19 promoted PDAC cell invasion and migration at least partially by increasing HMGA2-mediated epithelial-mesenchymal transition (EMT) through antagonizing let-7. This study suggests an important role of H19 in regulating metastasis of PDAC and provides some clues for elucidating the lncRNA-miRNA functional network in cancer.

Keywords

LncRNA-H19 let-7 HMGA2 Pancreatic cancer Migration Invasion 

Notes

Acknowledgments

This work was supported by Science and Technology Commission of Shanghai Municipality (13JC1407402).

Conflicts of interest

None

References

  1. 1.
    Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.CrossRefPubMedGoogle Scholar
  2. 2.
    Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–57.CrossRefPubMedGoogle Scholar
  3. 3.
    Keleg S, Buchler P, Ludwig R, Buchler MW, Friess H. Invasion and metastasis in pancreatic cancer. Mol Cancer. 2003;2:14.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Mattick JS. Makunin IV: Non-coding RNA. Hum Mol Genet. 2006;15 Spec No 1:R17-R29.Google Scholar
  5. 5.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. Febs Lett. 2010;584:4575–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007;13:313–6.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32:473–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Byun HM, Wong HL, Birnstein EA, Wolff EM, Liang G, Yang AS. Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res. 2007;67:10753–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 2002;23:1885–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007;2:e845.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52:101–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Bussing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 2008;14:400–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Yamaguchi H, Kojima T, Ito T, Kimura Y, Imamura M, Son S, et al. Transcriptional control of tight junction proteins via a protein kinase c signal pathway in human telomerase reverse transcriptase-transfected human pancreatic duct epithelial cells. Am J Pathol. 2010;177:698–712.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007;21:1025–30.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Hristov AC, Cope L, Reyes MD, Singh M, Iacobuzio-Donahue C, Maitra A, et al. HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Mod Pathol. 2009;22:43–9.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008;283:33437–46.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007;13:4769–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 2013;280:1709–16.CrossRefPubMedGoogle Scholar
  27. 27.
    Ariel I, Miao HQ, Ji XR, Schneider T, Roll D, de Groot N, et al. Imprinted H19 oncofetal RNA is a candidate tumour marker for hepatocellular carcinoma. Mol Pathol. 1998;51:21–5.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Murphy SK, Huang Z, Wen Y, Spillman MA, Whitaker RS, Simel LR, et al. Frequent IGF2/H19 domain epigenetic alterations and elevated IGF2 expression in epithelial ovarian cancer. Mol Cancer Res. 2006;4:283–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T, et al. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene. 1995;10:1193–8.PubMedGoogle Scholar
  30. 30.
    Okamoto K, Morison IM, Taniguchi T, Reeve AE. Epigenetic changes at the insulin-like growth factor II/H19 locus in developing kidney is an early event in Wilms tumorigenesis. Proc Natl Acad Sci U S A. 1997;94:5367–71.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat Genet. 1994;7:440–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Casola S, Pedone PV, Cavazzana AO, Basso G, Luksch R, D'Amore ES, et al. Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene. 1997;14:1503–10.CrossRefPubMedGoogle Scholar
  33. 33.
    Saito Y, Suzuki H, Matsuura M, Sato A, Kasai Y, Yamada K, et al. Micrornas in hepatobiliary and pancreatic cancers. Front Genet. 2011;2:66.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 2005;33:5394–403.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Luo G, Long J, Cui X, Xiao Z, Liu Z, Shi S, et al. Highly lymphatic metastatic pancreatic cancer cells possess stem cell-like properties. Int J Oncol. 2013;42:979–84.PubMedGoogle Scholar
  36. 36.
    Wang YY, Ren T, Cai YY, He XY. MicroRNA let-7a inhibits the proliferation and invasion of nonsmall cell lung cancer cell line 95D by regulating K-Ras and HMGA2 gene expression. Cancer Biother Radiopharm. 2013;28:131–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Luo Y, Li W, Liao H. HMGA2 induces epithelial-to-mesenchymal transition in human hepatocellular carcinoma cells. Oncol Lett. 2013;5:1353–6.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol. 2009;174:854–68.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Liu Q, Liu T, Zheng S, Gao X, Lu M, Sheyhidin I, Lu X. HMGA2 is down-regulated by microRNA let-7 and associated with epithelial-mesenchymal transition in Kazakh's esophageal squamous cell carcinoma. Histopathology. 2014.Google Scholar
  40. 40.
    Morishita A, Zaidi MR, Mitoro A, Sankarasharma D, Szabolcs M, Okada Y, et al. HMGA2 is a driver of tumor metastasis. Cancer Res. 2013;73:4289–99.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Zha L, Zhang J, Tang W, Zhang N, He M, Guo Y, et al. HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig Dis Sci. 2013;58:724–33.CrossRefPubMedGoogle Scholar
  42. 42.
    Tan EJ, Thuault S, Caja L, Carletti T, Heldin CH, Moustakas A. Regulation of transcription factor twist expression by the DNA architectural protein high mobility group a2 during epithelial-to-mesenchymal transition. J Biol Chem. 2012;287:7134–45.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Belge G, Radtke A, Meyer A, Stegen I, Richardt D, Nimzyk R, et al. Upregulation of the high mobility group AT-hook 2 gene in acute aortic dissection is potentially associated with endothelial-mesenchymal transition. Histol Histopathol. 2011;26:1029–37.PubMedGoogle Scholar
  44. 44.
    Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition. J Cell Biol. 2006;174:175–83.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Chenchao Ma
    • 1
  • Kate Nong
    • 1
  • Hongda Zhu
    • 1
  • Weiwei Wang
    • 1
  • Xinyu Huang
    • 1
  • Zhou Yuan
    • 1
  • Kaixing Ai
    • 1
  1. 1.Department of General SurgeryThe Sixth People’ Hospital Affiliated to Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations