Advertisement

Tumor Biology

, Volume 35, Issue 9, pp 9219–9227 | Cite as

Germline mutations of TP53 gene in breast cancer

  • Surekha Damineni
  • Vadlamudi Raghavendra Rao
  • Satish Kumar
  • Rajasekar Reddy Ravuri
  • Sailaja Kagitha
  • Nageswara Rao Dunna
  • Raghunadharao Digumarthi
  • Vishnupriya Satti
Research Article

Abstract

Germline alterations of the TP53 gene encoding the p53 protein have been observed in the majority of families with the Li–Fraumeni syndrome, a rare dominantly inherited disorder with breast cancer. Genomic DNA samples of 182 breast cancer cases and 186 controls were sequenced for TP53 mutations in the exon 5–9 and intervening introns 5, 7–9. Direct sequencing was done using Applied Biosystem 3730 DNA analyzer. In the present study, we observed nine mutations in the sequenced region, of which five were novel. Hardy-Weinberg equilibrium (HWE) was done for all the mutations; C14181T, T14201G, and G13203A have shown deviation from HWE. High linkage disequilibrium (LD) was observed between C14181T (rs129547788) and T14201G (rs12951053) (r 2 = 0.98.3; D′ = 1.00), whereas other observed mutations do not show strong LD with any of the other mutations. None of the intronic mutations has shown significant association with the breast cancer, two exonic mutations G13203A (rs28934578) and A14572G are significantly (P = 0.04, P = 0.007) associated with breast cancer. Germline mutations observed in DNA-binding domain of the gene showed significant association with breast cancer. This study reports five novel germline mutations in the TP53 gene out of which one mutation may confer significant risk to the breast cancer. Mutations in DNA-binding domain of TP53 gene may play role in the early onset and prognosis of breast cancer. The population-based studies of germline mutations in DNA-binding domain of TP53 gene helps in identification of individuals and families who are at risk of developing cancers.

Keywords

TP53 Mutations DNA-binding domain Breast cancer 

Notes

Acknowledgments

I would like to acknowledge the University Grants Commission (U.G.C) New Delhi, India, Department of Medical Oncology, Nizams Institute of Medical Sciences, Hyderabad, India for the financial assistance. I would like to thank the Anthropological survey of India, Mysore, India for providing sequencing facility and necessary consumables and Mr. Jagan Mohan Rao Allu for his help in structural analysis.

References

  1. 1.
    McBride OW, Merry D, Givol D. The gene for human TP53 cellular tumor antigene is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A. 1986;83:130–4.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Soussi T, Caron de Fomentel P. Structural aspects of the TP53 protein in relation to gene evolution. Oncogene. 1990;5:945–52.PubMedGoogle Scholar
  3. 3.
    Kristen K, Arnold J. Identification of a novel TP53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA. 1996;93(26):15335–40.CrossRefGoogle Scholar
  4. 4.
    Cho Y, Gorina S, Jeffrey P, Pavletich NP. Crystal structure of a TP53 tumor suppressor DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Hollestein M, Sidransky D, Vogelstein B, Harris CC. P53 mutations in human cancers. Science. 1991;253:49–53.CrossRefGoogle Scholar
  6. 6.
    Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein S. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992;256:827–30.CrossRefPubMedGoogle Scholar
  7. 7.
    Ko LJ, Prives C. TP53: puzzle and paradigm. Genes Dev. 1996;10:1054–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Greenblatt MS, Bennett, Hollstein M, et al. Mutations in the TP53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855–78.PubMedGoogle Scholar
  9. 9.
    Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under mutational model. Proc Natl Acd Sci USA. 1990;87:4692–6.CrossRefGoogle Scholar
  10. 10.
    Nurenberg JI, Lahari Jr DK. A rapid non-enzymatic method for the preparation of HMW DNA from blood RFLP studies. Nucleic Acid Res. 1991;19:5444.CrossRefGoogle Scholar
  11. 11.
    Steve R, Helen J. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, editors. Bioinformatics methods and protocols: methods in molecular biology. Totowa: Humana Press; 2000. p. 365–86.Google Scholar
  12. 12.
    Berkson RG, Hollick JJ, Westwood NJ, Woods JA, Lane DP, Lain S. Pilot screening programme for small molecule activators of TP53. Int J Cancer. 2005;115(5):701–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31(13):3497–500.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. 2000;28:1102–4.PubMedGoogle Scholar
  15. 15.
    Fairbrother WG, Yeh RF, Sharp PA, Burge GE. Predictive identification of exonic splicing enhancers in human genes. Science. 2002;297(5583):1007–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB. Identification and analysis of alternative splicing events conserved in human and mouse. PNAS. 2005;102(8):2850–5.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK-a tool set for whole genome association and population based linkage analysis. Am J Hum Genet. 2007;81(5):559–75.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Carter KW, Mc Caskie PA, Palmer LJ. JLIN: a java based linkage disequilibrium plotter. BMC Bioinfermatics. 2006;7(11):60.CrossRefGoogle Scholar
  19. 19.
    Prosser J, Condie A. Biallelic ApaI polymorphism of the human TP53 gene (TP53). Nucleic Acids Res. 1991;19:4799.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Berggren P, Hemminki K, Steineck G. TP53 intron 7 polymorphisms in urinary bladder cancer patients and controls. Mutagenesis. 2000;15:57–60.CrossRefPubMedGoogle Scholar
  21. 21.
    Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991;252:1708–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Keshava C, Frye BL, Wolff MS, McCanlies EC, Weston A. Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev. 2002;11:127–30.PubMedGoogle Scholar
  24. 24.
    Bosari S, Roncalli M, Viale G, Bossi P, Coggi G. p53 immunoreactivity in inflammatory and neoplastic diseases of the uterine cervix. J Pathol. 1993;169:425–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Fabian CJ, Kamel S, Zalles C, Kimler BF. Identification of a chemoprevention cohort from a population of women at high risk for breast cancer. J Cell Biochem. 1996;25:112–22.CrossRefGoogle Scholar
  26. 26.
    Rohan TE, Hartwick W, Miller AB, Kandel RA. Immunohistochemical detection of c-erbB-2 and p53 in benign breast disease and breast cancer risk. J Natl Cancer Inst. 1998;90:1262–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Levesque MA, Yu H, Clark GM, Diamandis EP. Enzyme-linked immunoabsorbant assay-detected p53 protein accumulation: a prognostic factor in a large breast cancer cohort. J Clin Oncol. 1998;16:2641–50.PubMedGoogle Scholar
  28. 28.
    Fabian CJ, Kimler BF, Zalles CM, Klemp JR, Kamel S, Zeiger S, et al. Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst. 2000;92:1217–27.CrossRefPubMedGoogle Scholar
  29. 29.
    Varley J, Evans D, Birch J. Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer. 1997;76:1–14.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, The HP, et al. TP53 database. New online mutation analysis and recommendation to users. Hum Mutat. 2002;19:607–14.CrossRefPubMedGoogle Scholar
  31. 31.
    Brian L, Amy TD, Montserrat GC. Genetic variation in TP53 and risk of breast cancer in a population-based case–control study. Carcinogenesis. 2007;28(8):1680–6.CrossRefGoogle Scholar
  32. 32.
    Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Chamary JV, Parmley JL, Hurst LD. Hearing silence: on-neutral evolution at synonymous sites in mammals. Nature Reveiws Genetics. 2006;7:98–108.CrossRefGoogle Scholar
  34. 34.
    Rocha EPC, Danchin A. An analysis of determinants of aminoacids substitution rates in bacterial proteins. Mol Biol Evol. 2004;21(1):108–16.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Surekha Damineni
    • 1
  • Vadlamudi Raghavendra Rao
    • 2
  • Satish Kumar
    • 2
  • Rajasekar Reddy Ravuri
    • 2
  • Sailaja Kagitha
    • 1
  • Nageswara Rao Dunna
    • 1
  • Raghunadharao Digumarthi
    • 3
  • Vishnupriya Satti
    • 1
  1. 1.Department of GeneticsOsmania UniversityHyderabadIndia
  2. 2.Anthropological Survey of India, Government of IndiaKolakataIndia
  3. 3.Department of Medical OncologyNizams Institute of Medical SciencesHyderabadIndia

Personalised recommendations