Skip to main content

Advertisement

Log in

The diplotype Fas −1377A/−670G as a genetic marker to predict a lower risk of breast cancer in Chinese women

  • Research Article
  • Published:
Tumor Biology

Abstract

This study was designed to reveal the effects of Fas and FasL polymorphisms of interest on breast cancer risk. A total of 439 patients with breast cancer and 439 controls were enrolled in this study. The genotypes Fas −1377G/A, Fas −670A/G, and FasL −844 T/C were detected by MassARRAY. The protein expressions of estrogen receptor, progesterone receptor, and CerbB-2 were determined by immunohistochemistry. Among the 439 patients, Fas mRNA levels in 22 samples of breast cancer and adjacent normal tissues were detected by real-time polymerase chain reaction, and the soluble Fas and Fas ligand concentrations of 180 patients were measured by enzyme-linked immunosorbent assay. The Fas −1377GA, Fas −1377AA, Fas −670AG, Fas −670GG, and FasL −844TC genotypes were associated with a reduced risk of breast cancer. Haplotype analysis indicated that Fas −1377G/−670A was associated with an increased risk of breast cancer, whereas Fas −1377A/−670A was associated with the opposite effect. Furthermore, gene–gene interaction analysis revealed that the Fas −1377GA/AA (−670AG/GG) and FasL −844CC or TC/TT genotypes were associated with a decreased risk of breast cancer. Meanwhile, −1377GG and −670AA genotypes were associated with higher soluble Fas concentrations than other genotypes. We conclude that Fas and FasL polymorphisms can affect breast cancer risk and that Fas polymorphisms are likely to affect breast cancer risk by regulating the soluble Fas concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Wang W, Zheng Z, Yu W, Lin H, Cui B, Cao F. Polymorphisms of the FAS and FASL genes and risk of breast cancer. Oncol Lett. 2012;3(3):625–8. doi:10.3892/ol.2011.541.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Fan XQ, Guo YJ. Apoptosis in oncology. Cell Res. 2001;11(1):1–7. doi:10.1038/sj.cr.7290060.

    Article  CAS  PubMed  Google Scholar 

  4. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21(3):485–95.

    Article  CAS  PubMed  Google Scholar 

  5. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342–8. doi:10.1038/35077213.

    Article  CAS  PubMed  Google Scholar 

  6. Griffith TS, Ferguson TA. The role of FasL-induced apoptosis in immune privilege. Immunol Today. 1997;18(5):240–4.

    Article  CAS  PubMed  Google Scholar 

  7. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–8.

    Article  CAS  PubMed  Google Scholar 

  8. Houston A, O'Connell J. The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol. 2004;4(4):321–6. doi:10.1016/j.coph.2004.03.008.

    Article  CAS  PubMed  Google Scholar 

  9. Muschen M, Warskulat U, Beckmann MW. Defining CD95 as a tumor suppressor gene. J Mol Med (Berl). 2000;78(6):312–25.

    Article  CAS  Google Scholar 

  10. Zhang B, Sun T, Xue L, Han X, Lu N, Shi Y, et al. Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis. 2007;28(5):1067–73. doi:10.1093/carcin/bgl250.

    Article  CAS  PubMed  Google Scholar 

  11. Crew KD, Gammon MD, Terry MB, Zhang FF, Agrawal M, Eng SM, et al. Genetic polymorphisms in the apoptosis-associated genes FAS and FASL and breast cancer risk. Carcinogenesis. 2007;28(12):2548–51. doi:10.1093/carcin/bgm211.

    Article  CAS  PubMed  Google Scholar 

  12. Hashemi M, Fazaeli A, Ghavami S, Eskandari-Nasab E, Arbabi F, Mashhadi MA, et al. Functional polymorphisms of FAS and FASL gene and risk of breast cancer - pilot study of 134 cases. PLoS One. 2013;8(1):e53075. doi:10.1371/journal.pone.0053075.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mahfoudh W, Bouaouina N, Gabbouj S, Chouchane L. FASL-844 T/C polymorphism: a biomarker of good prognosis of breast cancer in the Tunisian population. Hum Immunol. 2012;73(9):932–8. doi:10.1016/j.humimm.2012.06.001.

    Article  CAS  PubMed  Google Scholar 

  14. Krippl P, Langsenlehner U, Renner W, Koppel H, Samonigg H. Re: Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst. 2004;96(19):1478–9. doi:10.1093/jnci/djh289. author reply 9.

    Article  PubMed  Google Scholar 

  15. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science. 1994;263(5154):1759–62.

    Article  CAS  PubMed  Google Scholar 

  16. Cascino I, Fiucci G, Papoff G, Ruberti G. Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol. 1995;154(6):2706–13.

    CAS  PubMed  Google Scholar 

  17. Papoff G, Cascino I, Eramo A, Starace G, Lynch DH, Ruberti G. An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro. J Immunol. 1996;156(12):4622–30.

    CAS  PubMed  Google Scholar 

  18. Ueno T, Toi M, Tominaga T. Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res. 1999;5(11):3529–33.

    CAS  PubMed  Google Scholar 

  19. Sheen-Chen SM, Chen HS, Eng HL, Chen WJ. Circulating soluble Fas in patients with breast cancer. World J Surg. 2003;27(1):10–3. doi:10.1007/s00268-002-6378-5.

    Article  PubMed  Google Scholar 

  20. Gregory MS, Saff RR, Marshak-Rothstein A, Ksander BR. Control of ocular tumor growth and metastatic spread by soluble and membrane Fas ligand. Cancer Res. 2007;67(24):11951–8. doi:10.1158/0008-5472.CAN-07-0780.

    Article  CAS  PubMed  Google Scholar 

  21. Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009;Chapter 2:Unit 2 12. doi:10.1002/0471142905.hg0212s60.

  22. Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39(3):347–51. doi:10.1038/ng1975.

    Article  CAS  PubMed  Google Scholar 

  23. Gul AE, Keser SH, Barisik NO, Kandemir NO, Cakir C, Sensu S, et al. The relationship of cerb B 2 expression with estrogen receptor and progesterone receptor and prognostic parameters in endometrial carcinomas. Diagn Pathol. 2010;5:13. doi:10.1186/1746-1596-5-13.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bland JM, Altman DG. Statistics notes. The odds ratio. BMJ. 2000;320(7247):1468.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kim R, Emi M, Tanabe K, Uchida Y, Toge T. The role of Fas ligand and transforming growth factor beta in tumor progression: molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy. Cancer. 2004;100(11):2281–91. doi:10.1002/cncr.20270.

    Article  CAS  PubMed  Google Scholar 

  26. Shao P, Ding Q, Qin C, Wang M, Tang J, Zhu J, et al. Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of prostate cancer in a Chinese population. Prostate. 2011;71(10):1122–30. doi:10.1002/pros.21328.

    Article  CAS  PubMed  Google Scholar 

  27. Li C, Larson D, Zhang Z, Liu Z, Strom SS, Gershenwald JE, et al. Polymorphisms of the FAS and FAS ligand genes associated with risk of cutaneous malignant melanoma. Pharmacogenet Genomics. 2006;16(4):253–63. doi:10.1097/01.fpc.0000199501.54466.de.

    Article  PubMed  Google Scholar 

  28. Huang QR, Morris D, Manolios N. Identification and characterization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol. 1997;34(8–9):577–82.

    Article  CAS  PubMed  Google Scholar 

  29. Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL, et al. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res. 2003;63(15):4327–30.

    CAS  PubMed  Google Scholar 

  30. Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol. 2009;182(6):3801–8. doi:10.4049/jimmunol.0801548.

    Article  CAS  PubMed  Google Scholar 

  31. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol. 2004;172(2):989–99.

    Article  CAS  PubMed  Google Scholar 

  32. Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005;175(7):4583–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109(10):4336–42. doi:10.1182/blood-2006-09-046201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lee JK, Sayers TJ, Back TC, Wigginton JM, Wiltrout RH. Lack of FasL-mediated killing leads to in vivo tumor promotion in mouse Lewis lung cancer. Apoptosis. 2003;8(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  35. Mitsiades CS, Poulaki V, Fanourakis G, Sozopoulos E, McMillin D, Wen Z, et al. Fas signaling in thyroid carcinomas is diverted from apoptosis to proliferation. Clin Cancer Res. 2006;12(12):3705–12. doi:10.1158/1078-0432.CCR-05-2493.

    Article  CAS  PubMed  Google Scholar 

  36. Owen-Schaub LB, Radinsky R, Kruzel E, Berry K, Yonehara S. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 1994;54(6):1580–6.

    CAS  PubMed  Google Scholar 

  37. Shinohara H, Yagita H, Ikawa Y, Oyaizu N. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res. 2000;60(6):1766–72.

    CAS  PubMed  Google Scholar 

  38. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 2004;23(15):3175–85. doi:10.1038/sj.emboj.7600325.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lee SH, Shin MS, Lee JY, Park WS, Kim SY, Jang JJ, et al. In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. J Pathol. 1999;188(2):207–12. doi:10.1002/(SICI)1096-9896(199906)188:2<207::AID-PATH337>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  40. Furuya Y, Fuse H, Masai M. Serum soluble Fas level for detection and staging of prostate cancer. Anticancer Res. 2001;21(5):3595–8.

    CAS  PubMed  Google Scholar 

  41. Jiang J, Ulbright TM, Zhang S, Eckert GJ, Kao C, Gardner TA, et al. Fas and Fas ligand expression is elevated in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Cancer. 2002;95(2):296–300. doi:10.1002/cncr.10674.

    Article  PubMed  Google Scholar 

  42. Furuya Y, Nagakawa O, Fuse H. Prognostic significance of serum soluble Fas level and its change during regression and progression of advanced prostate cancer. Endocr J. 2003;50(5):629–33.

    Article  PubMed  Google Scholar 

  43. Wu J, Metz C, Xu X, Abe R, Gibson AW, Edberg JC, et al. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol. 2003;170(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  44. Wiechec E, Hansen LL. The effect of genetic variability on drug response in conventional breast cancer treatment. Eur J Pharmacol. 2009;625(1–3):122–30. doi:10.1016/j.ejphar.2009.08.045.

    Article  CAS  PubMed  Google Scholar 

  45. Wiechec E. Implications of genomic instability in the diagnosis and treatment of breast cancer. Expert Rev Mol Diagn. 2011;11(4):445–53. doi:10.1586/erm.11.21.

    Article  CAS  PubMed  Google Scholar 

  46. Sau A, Pellizzari Tregno F, Valentino F, Federici G, Caccuri AM. Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys. 2010;500(2):116–22. doi:10.1016/j.abb.2010.05.012.

    Article  CAS  PubMed  Google Scholar 

  47. Sau A, Pellizzari Tregno F, Valentino F, Federici G, Caccuri AM. Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys. 2010;500(2):116–22. doi:10.1016/j.abb.2010.05.012.

    Article  CAS  PubMed  Google Scholar 

  48. Arun BK, Granville LA, Yin G, Middleton LP, Dawood S, Kau SW, et al. Glutathione-s-transferase-pi expression in early breast cancer: association with outcome and response to chemotherapy. Cancer Invest. 2010;28(5):554–9. doi:10.3109/07357900903286925.

    Article  CAS  PubMed  Google Scholar 

  49. Bewick MA, Conlon MS, Lafrenie RM. Polymorphisms in manganese superoxide dismutase, myeloperoxidase and glutathione-S-transferase and survival after treatment for metastatic breast cancer. Breast Cancer Res Treat. 2008;111(1):93–101. doi:10.1007/s10549-007-9764-8.

    Article  CAS  PubMed  Google Scholar 

  50. Yang G, Shu XO, Ruan ZX, Cai QY, Jin F, Gao YT, et al. Genetic polymorphisms in glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer. 2005;103(1):52–8. doi:10.1002/cncr.20729.

    Article  CAS  PubMed  Google Scholar 

  51. Sun N, Sun X, Chen B, Cheng H, Feng J, Cheng L, et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2010;65(3):437–46. doi:10.1007/s00280-009-1046-1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kadouri L, Kote-Jarai Z, Hubert A, Baras M, Abeliovich D, Hamburger T, et al. Glutathione-S-transferase M1, T1 and P1 polymorphisms, and breast cancer risk, in BRCA1/2 mutation carriers. Br J Cancer. 2008;98(12):2006–10. doi:10.1038/sj.bjc.6604394.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bewick MA, Conlon MS, Lafrenie RM. Polymorphisms in manganese superoxide dismutase, myeloperoxidase and glutathione-S-transferase and survival after treatment for metastatic breast cancer. Breast Cancer Res Treat. 2008;111(1):93–101. doi:10.1007/s10549-007-9764-8.

    Article  CAS  PubMed  Google Scholar 

  54. Kafka A, Sauer G, Jaeger C, Grundmann R, Kreienberg R, Zeillinger R, et al. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int J Oncol. 2003;22(5):1117–21.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from The National Natural Science Foundation of China (81172141, 81200401) and from the Jiangsu Provincial Key Medical Talents to SW, the Program of Healthy Talents’ Cultivation for Nanjing City to BH, and the Medical Science and Technology Development Foundation, Nanjing Department of Health (QYK11175), to BH. We thank Professor Xie Hongguang of the Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, for revising our manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shukui Wang or William C. Cho.

Additional information

Yeqiong Xu, Qiwen Deng, and Bangshun He contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Deng, Q., He, B. et al. The diplotype Fas −1377A/−670G as a genetic marker to predict a lower risk of breast cancer in Chinese women. Tumor Biol. 35, 9147–9161 (2014). https://doi.org/10.1007/s13277-014-2175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2175-7

Keywords

Navigation