Advertisement

Tumor Biology

, Volume 35, Issue 9, pp 9371–9380 | Cite as

Expression of TGFβ-1 and EHD1 correlated with survival of non-small cell Lung cancer

Research Article

Abstract

Transforming growth factor-β1 (TGFβ-1) signaling is regulated by endocytotic pathway. To clarify the prognostic value of TGFβ-1 and to verify the involvement of endocytosis in drug resistance, we examined the expression of TGFβ-1 and Eps15 homology domain 1 (EHD1) in non-small cell lung cancer (NSCLC) and its association with tumor characteristics and survival of patients with NSCLC. Expression of TGFβ-1 and EHD1 was evaluated by immunohistochemistry in paraffin sections from 105 NSCLC patients. Overall survival (OS) was analyzed by Kaplan–Meier method, log-rank test, and multivariate Cox proportional hazard regression model. Positive immunostaining of TGFβ-1 and EHD1 was detected in 52.38 and 39.05 % of NSCLC samples, respectively. In non-adjuvant chemotherapy-treated group (P = 0.006) and epidermal growth factor receptor (EGFR) (+) group (P = 0.038), patients with TGFβ-1 expression had a longer OS. EHD1 negative expression predicted a longer OS (P = 0.003), especially in EGFR (+) (P = 0.006) and adjuvant chemotherapy-treated patients (P = 0.003). NSCLC patients with concurrent positive TGFβ-1 and negative EHD1 (combined markers) were significantly correlated with better OS (P = 0.001). American Joint Committee on Cancer (AJCC) status and combined markers were independent prognostic indicators for OS (HR (95 % CI) 1.576 (1.112–2.232), P = 0.011 and HR 0.349 (0.180–0.673), P = 0.002, respectively). We identified concordant TGFβ-1 positive and EHD1 negative as a strong favorable prognosis factor in NSCLC. Our results may help us to select and optimize strategies for individualized therapy.

Keywords

TGFβ-1 EHD1 Survival Non-small cell lung cancer (NSCLC) 

Abbreviations

EHD1

Eps15 homology domain 1

FFPE

Formalin-fixed paraffin-embedded

IHC

immunohistochemistry

NSCLC

Non-small cell lung cancer

TGFβ-1

Transforming growth factor-β1

MST

Median survival time

Notes

Acknowledgments

Thanks are given to Professor Jin Xiaoming and Dr. Tong Dandan for providing pathologic evaluation.

Funding

This work was supported by the National Natural and by Natural Science Foundation of Heilongjiang Province, China (grant number: LC2012C08 to M.Q.) Science Foundation of China (grant number 30772540, 81172214 to L.C.).

Conflicts of interest

None

Reference

  1. 1.
    Yang Y, Dong J, Sun K, Zhao L, Zhao F, Wang L, et al. Obesity and incidence of lung cancer: a meta-analysis. Int J Cancer J Int du Cancer. 2013;132(5):1162–9. doi: 10.1002/ijc.27719.CrossRefGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.Google Scholar
  3. 3.
    Walker J, Sawhney A, Hansen CH, Symeonides S, Martin P, Murray G, et al. Treatment of depression in people with lung cancer: a systematic review. Lung Cancer. 2013;79(1):46–53. doi: 10.1016/j.lungcan.2012.09.014.CrossRefPubMedGoogle Scholar
  4. 4.
    Scott WJ, Howington J, Feigenberg S, Movsas B, Pisters K. American College of Chest P. Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132(3):234S–42S. doi: 10.1378/chest.07-1378.CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson CS, Curran WJ. Combined modality therapy for stage III non-small-cell lung cancer. Semin Radiat Oncol. 2010;20(3):186–91. doi: 10.1016/j.semradonc.2010.01.007.CrossRefPubMedGoogle Scholar
  6. 6.
    Price KA, Azzoli CG, Gaspar LE. Chemoradiation for unresectable stage III non-small cell lung cancer. Semin Thorac Cardiovasc Surg. 2008;20(3):204–9. doi: 10.1053/j.semtcvs.2008.09.007.CrossRefPubMedGoogle Scholar
  7. 7.
    Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA. Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res. 1992;52(24):6949–52.PubMedGoogle Scholar
  8. 8.
    Jasani B, Wyllie FS, Wright PA, Lemoine NR, Williams ED, Wynford-Thomas D. Immunocytochemically detectable TGF-beta associated with malignancy in thyroid epithelial neoplasia. Growth Factors (Chur, Switzerland). 1990;2(2-3):149–55.CrossRefGoogle Scholar
  9. 9.
    Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295–309.CrossRefPubMedGoogle Scholar
  10. 10.
    Jeon HS, Jen J. TGF-beta signaling and the role of inhibitory Smads in non-small cell lung cancer. J Thorac Oncol: Off Publication Int Assoc Study Lung Cancer. 2010;5(4):417–9. doi: 10.1097/JTO.0b013e3181ce3afd.CrossRefGoogle Scholar
  11. 11.
    Yin M, Soikkeli J, Jahkola T, Virolainen S, Saksela O, Holtta E. TGF-beta signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. Am J Pathol. 2012;181(6):2202–16. doi: 10.1016/j.ajpath.2012.08.027.CrossRefPubMedGoogle Scholar
  12. 12.
    Zaiman AL, Podowski M, Medicherla S, Gordy K, Xu F, Zhen L, et al. Role of the TGF-beta/Alk5 signaling pathway in monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med. 2008;177(8):896–905. doi: 10.1164/rccm.200707-1083OC.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–21. doi: 10.1038/nrc1208.CrossRefPubMedGoogle Scholar
  14. 14.
    Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782(4):197–228. doi: 10.1016/j.bbadis.2008.01.006.CrossRefPubMedGoogle Scholar
  15. 15.
    Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A. 2003;100(15):8621–3. doi: 10.1073/pnas.1633291100.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology. 1993;105(6):1846–56.PubMedGoogle Scholar
  17. 17.
    Booth C, Harnden P, Selby PJ, Southgate J. Towards defining roles and relationships for tenascin-C and TGFbeta-1 in the normal and neoplastic urinary bladder. J Pathol. 2002;198(3):359–68. doi: 10.1002/path.1214.CrossRefPubMedGoogle Scholar
  18. 18.
    Mizukami Y, Nonomura A, Yamada T, Kurumaya H, Hayashi M, Koyasaki N, et al. Immunohistochemical demonstration of growth factors, TGF-alpha, TGF-beta, IGF-I and neu oncogene product in benign and malignant human breast tissues. Anticancer Res. 1990;10(5A):1115–26.PubMedGoogle Scholar
  19. 19.
    Inoue T, Ishida T, Takenoyama M, Sugio K, Sugimachi K. The relationship between the immunodetection of transforming growth factor-beta in lung adenocarcinoma and longer survival rates. Surg Oncol. 1995;4(1):51–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 2001;91(5):964–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Takanami I, Tanaka F, Hashizume T, Kodaira S. Roles of the transforming growth factor beta 1 and its type I and II receptors in the development of a pulmonary adenocarcinoma: results of an immunohistochemical study. J Surg Oncol. 1997;64(4):262–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Naslavsky N, Caplan S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol. 2011;21(2):122–31. doi: 10.1016/j.tcb.2010.10.003.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Sato M, Sato K, Liou W, Pant S, Harada A, Grant BD. Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J. 2008;27(8):1183–96.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Caplan S, Naslavsky N, Hartnell LM, Lodge R, Polishchuk RS, Donaldson JG, et al. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J. 2002;21(11):2557–67. doi: 10.1093/emboj/21.11.2557.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Chen YG. Endocytic regulation of TGF-beta signaling. Cell Res. 2009;19(1):58–70. doi: 10.1038/cr.2008.315.CrossRefPubMedGoogle Scholar
  26. 26.
    Bennett WP, El-Deiry WS, Rush WL, Guinee Jr DG, Freedman AN, Caporaso NE, et al. p21waf1/cip1 and transforming growth factor beta 1 protein expression correlate with survival in non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 1998;4(6):1499–506.Google Scholar
  27. 27.
    Meulmeester E, Ten Dijke P. The dynamic roles of TGF-beta in cancer. J Pathol. 2011;223(2):205–18. doi: 10.1002/path.2785.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu H, Meng Q, Wen Y, Hu J, Zhao Y, Cai L. Increased EHD1 in non-small cell lung cancer predicts poor survival. Thoracic Cancer. 2013;4(4):422–32.CrossRefGoogle Scholar
  29. 29.
    Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, et al. Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Molecular Cellular Proteomics: MCP. 2009;8(6):1192–205. doi: 10.1074/mcp.M800443-MCP200.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Shin J, Monti S, Aires DJ, Duvic M, Golub T, Jones DA, et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood. 2007;110(8):3015–27. doi: 10.1182/blood-2006-12-061507.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Wu Z-Z, Lu H-P, Chao CC-K. Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem Pharmacol. 2010;80(2):262–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, et al. Abrogation of TGF-beta signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest. 2009;119(6):1571–82. doi: 10.1172/JCI37480.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.The Forth Department of Medicine OncologyHarbin Medical University Cancer HospitalHarbinChina
  2. 2.The Fifth Department of Medicine OncologyThe Tumor Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Department of Biomedical and Pharmaceutical Sciences, College of PharmacyThe University of Rhode IslandKingstonUSA

Personalised recommendations