Advertisement

Tumor Biology

, Volume 35, Issue 9, pp 8953–8961 | Cite as

MiR-145 regulates cancer stem-like properties and epithelial-to-mesenchymal transition in lung adenocarcinoma-initiating cells

  • Jingwen Hu
  • Mantang Qiu
  • Feng Jiang
  • Shuai Zhang
  • Xin Yang
  • Jie Wang
  • Lin Xu
  • Rong Yin
Research Article

Abstract

MicroRNA-145 (MiR-145) is an important regulator of tumorigenesis. Our previous work indicated that miR-145 reduced the proliferation and invasion as well as the tumorosphere growth capacity in lung adenocarcinoma cells. However, the underlying molecular mechanisms remain elusive. Here, we reported that the expression level of miR-145 was downregulated in lung adenocarcinoma tissues and negatively correlated with the expression level of Oct4. MiR-145 inhibited the proliferation of lung cancer-initiating cells (LCICs), partially by regulating Oct4 expression. Furthermore, we found that miR-145 exerted repressive effect on cancer stem cell properties and inhibited epithelial-mesenchymal transition (EMT) in vitro, also partially by regulating Oct4. Finally, we confirmed the repressive effect of miR-145 on cancer stem cell properties and EMT in vivo. Taken together, these evidences suggest that miR-145 serves as a tumor suppressor which downregulates LCICs’ cancer stem cell properties and EMT process by targeting Oct4, leading to the inhibition of tumor growth and metastasis.

Keywords

Lung cancer-initiating cell MiR-145 Epithelial-to-mesenchymal transition Oct4 

Notes

Conflicts of interest

None

Founding sources

This study is founded by the Natural Science Foundation of China (81372321, 81201830), University Grant of Jiangsu Province (13KJB320010), and Key Clinical Medicine Technology Foundation of Jiangsu Province (BL2012030).

References

  1. 1.
    Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999;49:33–64. 1.CrossRefPubMedGoogle Scholar
  2. 2.
    Lam WK, Watkins DN. Lung cancer: future directions. Respirology. 2007;12:471–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Crunkhorn S. Anticancer drugs: curbing self-renewal of cancer-initiating cells. Nat Rev Drug Discov. 2014;13:102.CrossRefPubMedGoogle Scholar
  4. 4.
    Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer cd133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. 2009;106:16281–6.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, et al. Apoptosis induction by antisense oligonucleotides against mir-17-5p and mir-20a in lung cancers overexpressing mir-17-92. Oncogene. 2007;26:6099–105.CrossRefPubMedGoogle Scholar
  6. 6.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451:1125–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Mocellin S, Pasquali S, Pilati P. Oncomirs: from tumor biology to molecularly targeted anticancer strategies. Mini Rev Med Chem. 2009;9:70–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Xing F, Wu K, Watabe K. MicroRNAs in cancer stem cells: new regulators of stemness. Curr Pharm Des. 2014. doi: 10.2174/1381612820666140128210912.
  10. 10.
    Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29:4194–204.CrossRefPubMedGoogle Scholar
  11. 11.
    Lin S, Sun JG, Wu JB, Long HX, Zhu CH, Xiang T, et al. Aberrant microRNAs expression in cd133(+)/cd326(+) human lung adenocarcinoma initiating cells from a549. Mol Cells. 2012;33:277–83.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cho WC, Chow AS, Au JS. Mir-145 inhibits cell proliferation of human lung adenocarcinoma by targeting egfr and nudt1. RNA Biol. 2011;8:125–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. Mir-145 functions as tumor suppressor and targets two oncogenes, angpt2 and nedd9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140:387–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Yin R, Zhang S, Wu Y, Fan X, Jiang F, Zhang Z, et al. MicroRNA-145 suppresses lung adenocarcinoma-initiating cell proliferation by targeting oct4. Oncol Rep. 2011;25:1747–54.PubMedGoogle Scholar
  15. 15.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.CrossRefPubMedGoogle Scholar
  18. 18.
    Pirozzi G, Tirino V, Camerlingo R, Franco R, La Rocca A, Liguori E, et al. Epithelial to mesenchymal transition by tgfbeta-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One. 2011;6:e21548.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Dai X, Ge J, Wang X, Qian X, Zhang C, Li X. Oct4 regulates epithelial-mesenchymal transition and its knockdown inhibits colorectal cancer cell migration and invasion. Oncol Rep. 2013;29:155–60.PubMedGoogle Scholar
  20. 20.
    Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, et al. Downregulation of transcription factor oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun. 2011;411:786–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-mir-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer. 2009;45:2197–206.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived cd133-positive cells. PLoS One. 2008;3:e2637.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med. 2012;16:160–73.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun. 2009;383:157–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Eini R, Stoop H, Gillis AJ, Biermann K, Dorssers LC, Looijenga LH. Role of sox2 in the etiology of embryonal carcinoma, based on analysis of the nccit and nt2 cell lines. PLoS One. 2014;9:e83585.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Zhou CH, Yang SF, Li PQ. Human lung cancer cell line spc-a1 contains cells with characteristics of cancer stem cells. Neoplasma. 2012;59:685–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, et al. Coexpression of oct4 and nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010;70:10433–44.CrossRefPubMedGoogle Scholar
  31. 31.
    Hung JJ, Yang MH, Hsu HS, Hsu WH, Liu JS, Wu KJ. Prognostic significance of hypoxia-inducible factor-1alpha, twist1 and snail expression in resectable non-small cell lung cancer. Thorax. 2009;64:1082–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, et al. The zeb1/mir-200 feedback loop controls notch signalling in cancer cells. EMBO J. 2011;30:770–82.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, et al. Involvement of nf-kappab/mir-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 2011;18:16–25.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Jingwen Hu
    • 1
    • 2
  • Mantang Qiu
    • 1
    • 2
    • 3
  • Feng Jiang
    • 1
    • 2
  • Shuai Zhang
    • 1
    • 2
  • Xin Yang
    • 1
    • 2
    • 4
  • Jie Wang
    • 1
    • 5
  • Lin Xu
    • 1
    • 2
  • Rong Yin
    • 1
    • 2
  1. 1.Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer HospitalCancer Institute of Jiangsu ProvinceNanjingChina
  2. 2.Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer HospitalCancer Institute of Jiangsu ProvinceNanjingChina
  3. 3.The Fourth Clinical CollegeNanjing Medical UniversityNanjingChina
  4. 4.The First Clinical CollegeNanjing Medical UniversityNanjingChina
  5. 5.Department of Scientific Research, Nanjing Medical University Affiliated Cancer HospitalCancer Institute of Jiangsu ProvinceNanjingChina

Personalised recommendations