Tumor Biology

, Volume 35, Issue 9, pp 8733–8742 | Cite as

MicroRNA-520a-5p displays a therapeutic effect upon chronic myelogenous leukemia cells by targeting STAT3 and enhances the anticarcinogenic role of capsaicin

  • Burçin Tezcanlı Kaymaz
  • Vildan Bozok Çetintaş
  • Çağdaş Aktan
  • Buket Kosova
Research Article


Aberrant expression profiles of microRNAs (miRNAs) have been previously demonstrated for having essential roles in a wide range of cancer types including leukemia. Antiproliferative or proapoptotic effects of capsaicin have been reported in several cancers. We aimed to study miRNAs involved in the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway in chronic myeloid leukemia cell model and the effects of the capsaicin treatment on cell proliferation and miRNA regulation. miR-520a-5p expression was extremely downregulated in capsaicin-treated cells. Repressing the level of miR-520a-5p by transient transfection with specific miRNA inhibitor oligonucleotides resulted in induced inhibition of proliferation in leukemic cells. According to bioinformatics analysis, STAT3 messenger RNA was predicted as a putative miR-520a-5p target; which was confirmed by quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) and Western blot analysis. Cell proliferation inhibition was enhanced upon knockdown of STAT3 by RNA interference applications, but when miR-520a-5p inhibitor was additionally transfected onto STAT3 silenced cells, cell viability was dramatically decreased in leukemia cells. Finally, we observed the effects of capsaicin following miR-520a-5p inhibitor transfection upon cell proliferation, apoptosis, and STAT3 expression levels. We determined that, downregulation of miR-520a-5p affected the proliferation inhibition enhanced by capsaicin and reduced STAT3 mRNA and protein expression levels and increased apoptotic cell number. In summary, miR-520a-5p displays a therapeutic effect by targeting STAT3 and impacting the anticancer effects of capsaicin; whereas capsaicin, potentially through the miR-520a-5p/STAT3 interaction, induces apoptosis and inhibits K562 leukemic cell proliferation with need of further investigation.


Chronic myeloid leukemia miRNA siRNA Capsaicin qRT-PCR Cell proliferation Apoptosis 



We gratefully thank Prof. Dr. Cumhur Gündüz from Ege University Medical School, Medical Biology Department, for his assistance in apoptosis assay by directing us in flow cytometer analyses results.

Supplementary material

13277_2014_2138_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)


  1. 1.
    Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341(3):164–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Kantarjian HM, Talpaz M, Giles F, O’Brien S, Cortes J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med. 2006;145(12):913–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Vaidya S, Ghosh K, Vundinti BR. Recent developments in drug resistance mechanism in chronic myeloid leukemia: a review. Eur J Haematol. 2011;87(5):381–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Machova Polakova K, Koblihova J, Stopka T. Role of epigenetics in chronic myeloid leukemia. Curr Hematol Malig Rep. 2013;8(1):28–36.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Liu J, Wu CP, Lu BF, Jiang JT. Mechanism of T cell regulation by microRNAs. Cancer Biol Med. 2013;10(3):131–7.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Ho CS, Yap SH, Phuah NH, In LL, Hasima N. MicroRNAs associated with tumour migration, invasion and angiogenic properties in A549 and SK-Lu1 human lung adenocarcinoma cells. Lung Cancer. 2013.Google Scholar
  11. 11.
    Hansen TB, Kjems J, Bramsen JB. Enhancing miRNA annotation confidence in miRBase by continuous cross dataset analysis. RNA Biol. 2011;8(3):378–83.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Barbarotto E, Calin GA. Potential therapeutic applications of miRNA-based technology in hematological malignancies. Curr Pharm Des. 2008;14(21):2040–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Babashah S, Sadeghizadeh M, Tavirani MR, Farivar S, Soleimani M. Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr). 2012;35(5):317–34.CrossRefGoogle Scholar
  14. 14.
    Flamant S, Ritchie W, Guilhot J, Holst J, Bonnet ML, Chomel JC, et al. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica. 2010;95(8):1325–33.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Rokah OH, Granot G, Ovcharenko A, Modai S, Pasmanik-Chor M, Toren A, et al. Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One. 2012;7(4):e35501.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaymaz BT, Cetintas VB, Kosova B. Determination of the gene expression profiles of JAK/STAT cascade components for the potential role of capsaicin induced apoptosis of acute T-cell lymphoblastic leukemia cells. Kafkas J Med Sci. 2013;3(3):129–35.CrossRefGoogle Scholar
  17. 17.
    Tsou MF, Lu HF, Chen SC, Wu LT, Chen YS, Kuo HM, et al. Involvement of Bax, Bcl-2, Ca2+ and caspase-3 in capsaicin-induced apoptosis of human leukemia HL-60 cells. Anticancer Res. 2006;26(3A):1965–71.PubMedGoogle Scholar
  18. 18.
    Zhang J, Nagasaki M, Tanaka Y, Morikawa S. Capsaicin inhibits growth of adult T-cell leukemia cells. Leuk Res. 2003;27(3):275–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Surh YJ, Lee E, Lee JM. Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat Res. 1998;402(1–2):259–67.CrossRefPubMedGoogle Scholar
  20. 20.
    Morre DJ, Chueh PJ, Morre DM. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc Natl Acad Sci U S A. 1995;92(6):1831–5.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Takahata K, Chen X, Monobe K, Tada M. Growth inhibition of capsaicin on HeLa cells is not mediated by intracellular calcium mobilization. Life Sci. 1999;64(13):L165–71.CrossRefGoogle Scholar
  22. 22.
    Macho A, Calzado MA, Munoz-Blanco J, Gomez-Diaz C, Gajate C, Mollinedo F, et al. Selective induction of apoptosis by capsaicin in transformed cells: the role of reactive oxygen species and calcium. Cell Death Differ. 1999;6(2):155–65.CrossRefPubMedGoogle Scholar
  23. 23.
    Ito K, Nakazato T, Murakami A, Yamato K, Miyakawa Y, Yamada T, et al. Induction of apoptosis in human myeloid leukemic cells by 1′-acetoxychavicol acetate through a mitochondrial- and Fas-mediated dual mechanism. Clin Cancer Res. 2004;10(6):2120–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, et al. Differential expression of microRNAs in mouse pain models. Mol Pain. 2011;7:17.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Kaymaz BT, Selvi N, Gunduz C, Aktan C, Dalmizrak A, Saydam G, et al. Repression of STAT3, STAT5A, and STAT5B expressions in chronic myelogenous leukemia cell line K-562 with unmodified or chemically modified siRNAs and induction of apoptosis. Ann Hematol. 2013;92(2):151–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Bar-Natan M, Nelson EA, Xiang M, Frank DA. STAT signaling in the pathogenesis and treatment of myeloid malignancies. JAKSTAT. 2012;1(2):55–64.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Walker SR, Frank DA. Screening approaches to generating STAT inhibitors: allowing the hits to identify the targets. JAKSTAT. 2012;1(4):292–9.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41(6):1897–912.PubMedGoogle Scholar
  29. 29.
    Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O’Brien S, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006;20(10):1767–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Osaki M, Takeshita F, Ochiya T. MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers. 2008;13(7):658–70.CrossRefPubMedGoogle Scholar
  31. 31.
    San Jose-Eneriz E, Roman-Gomez J, Jimenez-Velasco A, Garate L, Martin V, Cordeu L, et al. MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol Cancer. 2009;8:69.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther. 2011;131(1):18–32.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Scholl V, Hassan R, Zalcberg IR. miRNA-451: a putative predictor marker of imatinib therapy response in chronic myeloid leukemia. Leuk Res. 2012;36(1):119–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Bozok Cetintas V, Tezcanli Kaymaz B, Aktug H, Oltulu F, Taskiran D. Capsaicin induced apoptosis and gene expression dysregulation of human acute lymphoblastic leukemia CCRF-CEM cells. J BUON. 2014;19(1):183–90.PubMedGoogle Scholar
  35. 35.
    Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O, et al. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genomics. 2011;4:79.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer. 2010;103(4):532–41.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G, de Franciscis V. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene. 2013;32(3):341–51.CrossRefPubMedGoogle Scholar
  38. 38.
    Darnell Jr JE. STATs and gene regulation. Science. 1997;277(5332):1630–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Yu H, Jove R. The STATs of cancer–new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.CrossRefPubMedGoogle Scholar
  40. 40.
    Lavecchia A, Di Giovanni C, Novellino E. STAT-3 inhibitors: state of the art and new horizons for cancer treatment. Curr Med Chem. 2011;18(16):2359–75.CrossRefPubMedGoogle Scholar
  41. 41.
    Choi SE, Kim TH, Yi SA, Hwang YC, Hwang WS, Choe SJ, et al. Capsaicin attenuates palmitate-induced expression of macrophage inflammatory protein 1 and interleukin 8 by increasing palmitate oxidation and reducing c-Jun activation in THP-1 (human acute monocytic leukemia cell) cells. Nutr Res. 2011;31(6):468–78.CrossRefPubMedGoogle Scholar
  42. 42.
    Dou D, Ahmad A, Yang H, Sarkar FH. Tumor cell growth inhibition is correlated with levels of capsaicin present in hot peppers. Nutr Cancer. 2011;63(2):272–81.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Burçin Tezcanlı Kaymaz
    • 1
  • Vildan Bozok Çetintaş
    • 1
  • Çağdaş Aktan
    • 1
  • Buket Kosova
    • 1
  1. 1.Medical Biology DepartmentEge University School of MedicineIzmirTurkey

Personalised recommendations