Tumor Biology

, Volume 35, Issue 9, pp 8927–8932 | Cite as

CD24 single nucleotide polymorphisms and cancer risk

  • Shushan Yan
  • Donghua Xu
  • Tao Jiang
  • Ping Wang
  • Yin Yin
  • Xiaochen Wang
  • Changjiang Hua
  • Bin Zhang
  • Zengcai Li
  • Lei Lu
  • Xianzhong Liu
  • Bingji Wang
  • Donghua Zhang
  • Rongsheng Zhang
  • Beicheng Sun
  • Xuan Wang
Research Article

Abstract

Cluster of differentiation 24 (CD24) has been implicated in the development of cancer. Several single nucleotide polymorphisms (SNPs) in CD24 gene are reported to exert diverse effect on cancer risk. However, the association between CD24 SNPs and cancer risk remains unclear due to contradictory published findings. We performed a meta-analysis by pooling all available published studies on the susceptibility of CD24 rs52812045 and rs3838646 polymorphisms to cancer. The pooled odds ratios (ORs) with 95 % confidence intervals (95 % CIs) were calculated. There were five independent case–control studies with 5,539 cases and 10,241 controls included into the present study. The pooled results showed that no appreciable relationship was identified between any of the SNPs of CD24 and cancer risk. Interestingly, a protective role of the CD24 rs3838646 polymorphism was found in the risk of breast cancer, but lack of statistical significance (del allele vs. TG allele: OR = 0.89; 95 % CI, 0.79–1.01; P OR = 0.063; del/del vs. TG/TG: OR = 0.70; 95 % CI, 0.44–1.12; P OR = 0.135; del/TG vs. TG/TG: OR = 0.91; 95 % CI, 0.80–1.04, P OR = 0.180; del/del + del/TG vs. TG/TG: OR = 0.90; 95 % CI, 0.79–1.03; P OR = 0.123; del/del vs. TG/TG + del/TG: OR = 0.69; 95 % CI, 0.44–1.08, P OR = 0.105). Our study firstly provides the evidence that SNPs (rs52812045 and rs3838646) of CD24 may not modify the risk of cancer. Nonetheless, more individual studies with high quality are needed for further elucidation.

Keywords

Cluster of differentiation 24 Polymorphism Breast cancer Hepatocellular carcinoma 

Notes

Conflicts of interest

None

References

  1. 1.
    Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659:15–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and inflammation: new insights into breast cancer development and progression. Am Soc Clin Oncol Ed Book. 2013;33:46–51.CrossRefGoogle Scholar
  3. 3.
    Elghetany MT, Patel J. Assessment of CD24 expression on bone marrow neutrophilic granulocytes: CD24 is a marker for the myelocytic stage of development. Am J Hematol. 2002;71:348–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Li O, Zheng P, Liu Y. CD24 expression on T cells is required for optimal T cell proliferation in lymphopenic host. J Exp Med. 2004;200:1083–9.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Zhou Q, Wu Y, Nielsen PJ, Liu Y. Homotypic interaction of the heat-stable antigen is not responsible for its co-stimulatory activity for T cell clonal expansion. Eur J Immunol. 1997;27:2524–8.CrossRefPubMedGoogle Scholar
  6. 6.
    De Bruijn ML, Peterson PA, Jackson MR. Induction of heat-stable antigen expression by phagocytosis is involved in in vitro activation of unprimed CTL by macrophages. J Immunol. 1996;156:2686–92.PubMedGoogle Scholar
  7. 7.
    Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev. 2004;197:179–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O. CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells. 2009;27:2928–40.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A. 2008;105:13427–32.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Rueda B, Miranda-Filloy JA, Martin J, Gonzalez-Gay MA. Association of CD24 gene polymorphisms with susceptibility to biopsy-proven giant cell arteritis. J Rheumatol. 2008;35:850–4.PubMedGoogle Scholar
  11. 11.
    Wang L, Lin S, Rammohan KW, Liu Z, Liu JQ, Liu RH, et al. A dinucleotide deletion in CD24 confers protection against autoimmune diseases. PLoS Genet. 2007;3:e49.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Diaz-Gallo LM, Medrano LM, Gomez-Garcia M, Cardena C, Rodrigo L, Mendoza JL, et al. Analysis of the influence of two CD24 genetic variants in Crohn’s disease and ulcerative colitis. Hum Immunol. 2011;72:969–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Kollaee A, Ghaffarpor M, Pourmahmoudian H, Shahbazi M, Zamani M. Investigation of CD24 and its expression in Iranian relapsing-remitting multiple sclerosis. Int J Neurosci. 2011;121:684–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Buck K, Hug S, Seibold P, Ferschke I, Altevogt P, Sohn C, et al. CD24 polymorphisms in breast cancer: impact on prognosis and risk. Breast Cancer Res Treat. 2013;137:927–37.CrossRefPubMedGoogle Scholar
  15. 15.
    Sheng L, Shui Y. Clusters of differentiation 24 polymorphism and hepatocellular carcinoma. Hepatology. 2011;54:2273. author reply 2273–2274.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou X, Cao Y, Luo J, Zeng X. Association between CD24 polymorphism and genetic susceptibility to breast cancer: a case–control study. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2013;38:1122–9 [Article in Chinese].PubMedGoogle Scholar
  17. 17.
    Cochran WG. The comparison of percentages in matched samples. Biometrika. 1950;37:256–66.CrossRefPubMedGoogle Scholar
  18. 18.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMedGoogle Scholar
  20. 20.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMedGoogle Scholar
  21. 21.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316:469. author reply 470–461.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Marme F, Werft W, Walter A, Keller S, Wang X, Benner A, et al. CD24 Ala57Val polymorphism predicts pathologic complete response to sequential anthracycline- and taxane-based neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Res Treat. 2012;132:819–31.CrossRefPubMedGoogle Scholar
  24. 24.
    Gerger A, Zhang W, Yang D, Bohanes P, Ning Y, Winder T, et al. Common cancer stem cell gene variants predict colon cancer recurrence. Clin Cancer Res. 2011;17:6934–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005;65:10783–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100:3547–9.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Alison MR. Liver stem cells: implications for hepatocarcinogenesis. Stem Cell Rev. 2005;1:253–60.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9:50–63.CrossRefPubMedGoogle Scholar
  30. 30.
    Baumann P, Thiele W, Cremers N, Muppala S, Krachulec J, Diefenbacher M, et al. CD24 interacts with and promotes the activity of c-src within lipid rafts in breast cancer cells, thereby increasing integrin-dependent adhesion. Cell Mol Life Sci. 2012;69:435–48.CrossRefPubMedGoogle Scholar
  31. 31.
    Su N, Peng L, Xia B, Zhao Y, Xu A, Wang J, et al. Lyn is involved in CD24-induced ERK1/2 activation in colorectal cancer. Mol Cancer. 2012;11:43.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Jacob J, Bellach J, Grutzmann R, Alldinger I, Pilarsky C, Dietel M, et al. Expression of CD24 in adenocarcinomas of the pancreas correlates with higher tumor grades. Pancreatology. 2004;4:454–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Li D, Zheng L, Jin L, Zhou Y, Li H, Fu J, et al. CD24 polymorphisms affect risk and progression of chronic hepatitis B virus infection. Hepatology. 2009;50:735–42.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Shushan Yan
    • 1
    • 3
  • Donghua Xu
    • 2
  • Tao Jiang
    • 1
  • Ping Wang
    • 3
  • Yin Yin
    • 3
  • Xiaochen Wang
    • 3
  • Changjiang Hua
    • 1
  • Bin Zhang
    • 1
  • Zengcai Li
    • 1
  • Lei Lu
    • 1
  • Xianzhong Liu
    • 1
  • Bingji Wang
    • 1
  • Donghua Zhang
    • 1
  • Rongsheng Zhang
    • 1
  • Beicheng Sun
    • 3
  • Xuan Wang
    • 1
  1. 1.Department of Surgical OncologyThe Eighty-First Hospital of People’s Liberation ArmyNanjingChina
  2. 2.Department of Rheumatism, The First Affiliated HospitalNanjing Medical UniversityNanjingChina
  3. 3.Liver Transplantation Center, The First Affiliated HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations