Skip to main content

Advertisement

Log in

Overexpression of ANXA1 confers independent negative prognostic impact in rectal cancers receiving concurrent chemoradiotherapy

  • Research Article
  • Published:
Tumor Biology

Abstract

Neoadjuvant concurrent chemoradiation therapy (CCRT) is an increasingly common therapeutic strategy for rectal cancer. Clinically, it remains a major challenge to predict therapeutic response and patient outcomes after CCRT. Annexin I (ANXA1), encoded by ANXA1, is a Ca2+/phospholipid-binding protein that mediates actin dynamics and cellular proliferation, as well as suggesting tumor aggressiveness and predicting therapeutic response in certain malignancies. However, expression of ANXA1 has never been reported in rectal cancer receiving CCRT. This study examined the predictive and prognostic impact of ANXA1 expression in patients with rectal cancer following neoadjuvant CCRT. We identified ANXA1 as associated with resistance to CCRT through data mining from a published transcriptomic dataset. Its immunoexpression was retrospectively assessed using H scores on pre-treatment biopsies from 172 rectal cancer patients treated with neoadjuvant CCRT followed by curative surgery. Results were correlated with clinicopathological features, therapeutic response, tumor regression grade (TRG), and metastasis-free survival (MeFS), as well as local recurrent-free survival (LRFS) and disease-specific survival (DSS). High expression of ANXA1 was associated with advanced pre-treatment tumor status (T3, T4, p = 0.022), advanced pre-treatment nodal status (N1, N2, p = 0.004), advanced post-treatment tumor status (T3, T4, p < 0.001), advanced post-treatment nodal status (N1, N2, p = 0.001) and inferior TRG (p = 0.009). In addition, high expression of ANXA1 emerged as an adverse prognosticator for DSS (p < 0.0001), LRFS (p = 0.0001) and MeFS (p = 0.0004). Moreover, high expression of ANXA1 also remained independently prognostic of worse DSS (hazard ratio [HR] = 3.998; p = 0.007), LRFS (HR = 3.206; p = 0.028) and MeFS (HR = 3.075; p = 0.017). This study concludes that high expression of ANXA1 is associated with poor therapeutic response and adverse outcomes in rectal cancer patients treated with neoadjuvant CCRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tian YF, Chen TJ, Lin CY, et al. SKP2 overexpression is associated with a poor prognosis of rectal cancer treated with chemoradiotherapy and represents a therapeutic target with high potential. Tumour Biol. 2013;34(2):1107–17.

    Article  CAS  PubMed  Google Scholar 

  2. Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–40.

    Article  CAS  PubMed  Google Scholar 

  3. Gérard J-P, Conroy T, Bonnetain F, et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: Results of FFCD 9203. J Clin Oncol. 2006;24:4620–5.

    Article  PubMed  Google Scholar 

  4. Bosset J-F, Collette L, Calais G, et al. Chemotherapy with preoperative radiotherapy in rectal Cancer. N Engl J Med. 2006;355:1114–23.

    Article  CAS  PubMed  Google Scholar 

  5. Lim LH, Pervaiz S. Annexin 1: the new face of an old molecule. FASEB J. 2007;21:968–75.

    Article  CAS  PubMed  Google Scholar 

  6. Marie F, Solito E. Annexin 1 expression and phosphorylation are up-regulated during liver regeneration and transformation in antithrombin III SV40 T large antigen transgenic mice. Hepatology. 2000;31:371–80.

    Article  Google Scholar 

  7. Skouteris GG, Schroder CH. The hepatocyte growth factor receptor kinase-mediated phosphorylation of lipocortin-1 transduces the proliferating signal of the hepatocyte growth factor. J Biol Chem. 1996;271:27266–73.

    Article  CAS  PubMed  Google Scholar 

  8. Croxtall J, Flower R, Perretti M. The role of lipocortin 1 in the regulation of A549 cell proliferation and leukocyte migration. J Lipid Mediat. 1993;6:295–302.

    CAS  PubMed  Google Scholar 

  9. Croxtall JD, Waheed S, Choudhury Q, Anand R, Flower RJ. N-terminal peptide fragments of lipocortin-1 inhibit A549 cell growth and block EGF-induced stimulation of proliferation. Int J Cancer. 1993;54:153–8.

    Article  CAS  PubMed  Google Scholar 

  10. Alldridge LC, Harris HJ, Plevin R, Hannon R, Bryant CE. The annexin protein lipocortin 1 regulates the MAPK/ERK pathway. J Biol Chem. 1999;274:37620–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem. 2004;279:50643–6.

    Article  CAS  PubMed  Google Scholar 

  12. Varticovski L, Chahwala SB, Whitman M, et al. Location of sites in human lipocortin I that are phosphorylated by protein tyrosine kinases and protein kinases A and C. Biochemistry. 1988;27:3682–90.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson MD, Kamso-Pratt J, Pepinsky RB, Whetsell Jr WO. Lipocortin-1 immunoreactivity in central and peripheral nervous system glial tumors. Hum Pathol. 1989;20:772–6.

    Article  CAS  PubMed  Google Scholar 

  14. Garcia Pedrero JM, Fernandez MP, Morgan RO, et al. Annexin A1 down-regulation in head and neck cancer is associated with epithelial differentiation status. Am J Pathol. 2004;164:73–9.

    Article  PubMed  Google Scholar 

  15. Rodrigo JP, Garcia-Pedrero JM, Fernandez MP, Morgan RO, Suarez C, Herrero A. Annexin A1 expression in nasopharyngeal carcinoma correlates with squamous differentiation. Am J Rhinol. 2005;19:483–7.

    PubMed  Google Scholar 

  16. Silistino-Souza R, Rodrigues-Lisoni FC, Cury PM, et al. Annexin 1: differential expression in tumor and mast cells in human larynx cancer. Int J Cancer. 2007;120:2582–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hu N, Flaig MJ, Su H, et al. Comprehensive characterization of annexin I alterations in esophageal squamous cell carcinoma. Clin Cancer Res. 2004;10:6013–22.

    Article  CAS  PubMed  Google Scholar 

  18. Hippo Y, Yashiro M, Ishii M, et al. Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 2001;61:889–95.

    CAS  PubMed  Google Scholar 

  19. Ahn SH, Sawada H, Ro JY, Nicolson GL. Differential expression of annexin I in human mammary ductal epithelial cells in normal and benign and malignant breast tissues. Clin Exp Metastasis. 1997;15:151–6.

    Article  CAS  PubMed  Google Scholar 

  20. Masaki T, Tokuda M, Ohnishi M, et al. Enhanced expression of the protein kinase substrate annexin in human hepatocellular carcinoma. Hepatology. 1996;24:72–81.

    CAS  PubMed  Google Scholar 

  21. Bai XF, Ni XG, Zhao P, et al. Overexpression of annexin 1 in pancreatic cancer and its clinical significance. World J Gastroenterol. 2004;10:1466–70.

    CAS  PubMed  Google Scholar 

  22. Li CF, Shen KH, Huang LC, Huang HY, Wang YH, Wu TF. Annexin-I overexpression is associated with tumour progression and independently predicts inferior disease-specific and metastasis-free survival in urinary bladder urothelial carcinoma. Pathology. 2010;42(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kang JS, Calvo BF, Maygarden SJ, Caskey LS, Mohler JL, Ornstein DK. Dysregulation of annexin I protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin Cancer Res. 2002;8:117–23.

    CAS  PubMed  Google Scholar 

  24. Lin CY, Tian YF, Wu LC, et al. Rsf-1 expression in rectal cancer: with special emphasis on the independent prognostic value after neoadjuvant chemoradiation. J Clin Pathol. 2012;65(8):687–92.

    Article  PubMed  Google Scholar 

  25. Bosset JF, Calais G, Mineur L, et al. Enhanced tumoricidal effect of chemotherapy with preoperative radiotherapy for rectal cancer: preliminary results of EORTC 22921. J Clin Oncol. 2005;23:5620e7.

    Article  Google Scholar 

  26. Gerard JP, Conroy T, Bonnetain F, et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-T4 rectal cancers: results of FFCD 9203. J Clin Oncol. 2006;24:4620e5.

    Article  Google Scholar 

  27. Bosset JF, Collette L, Calais G, et al. Chemotherapy with pre-operative radiotherapy in rectal cancer. N Engl J Med. 2006;355:1114e23.

    Article  Google Scholar 

  28. Hyams DM, Mamounas EP, Petrelli N, et al. A clinical trial to evaluate the worth of preoperative multimodality therapy in patients with operable carcinoma of the rectum: a progress report of National Surgical Adjuvant Breast and Bowel Project protocol R-03. Dis Colon Rectum. 1997;40:131e9.

    Article  Google Scholar 

  29. Valentini V, Coco C, Cellini N, et al. Preoperative chemoradiation for extraperitoneal T3 rectal cancer: acute toxicity, tumor response, and sphincter preservation. Int J Radiat Oncol Biol Phys. 1998;40:1067e75.

    Article  Google Scholar 

  30. Wagman R, Minsky BD, Cohen AM, et al. Sphincter preservation in rectal cancer with preoperative radiation therapy and coloanal anastomosis: long term follow-up. Int J Radiat Oncol Biol Phys. 1998;42:51e7.

    Article  Google Scholar 

  31. Lin CY, Sheu MJ, Li CF, et al.: Deficiency in asparagine synthetase expression in rectal cancers receiving concurrent chemoradiotherapy: negative prognostic impact and therapeutic relevance. Tumour Biol. 2014 Apr 13. [Epub ahead of print].

  32. Alvarez-Martinez MT, Mani JC, Porte F, Faivre-Sarrailh C, Liautard JP, Sri WJ. Characterization of the interaction between annexin I and profilin. Eur J Biochem. 1996;238:777–84.

    Article  CAS  PubMed  Google Scholar 

  33. Rao J. Targeting actin remodeling profiles for the detection and management of urothelial cancers—a perspective for bladder cancer research. Front Biosci. 2002;7:e1–8.

    Article  CAS  PubMed  Google Scholar 

  34. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.

    Article  CAS  PubMed  Google Scholar 

  35. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays. 2001;23:912–23.

    Article  CAS  PubMed  Google Scholar 

  36. Wu YL, Jiang XR, Lillington DM, Newland AC, Kelsey SM. Upregulation of lipocortin 1 inhibits tumour necrosis factor-induced apoptosis in human leukaemic cells: a possible mechanism of resistance to immune surveillance. Br J Haematol. 2000;111:807–16.

    CAS  PubMed  Google Scholar 

  37. Carollo M, Parente L, D’Alessandro N. Dexamethasone-induced cytotoxic activity and drug resistance effects in androgen-independent prostate tumor PC-3 cells are mediated by lipocortin 1. Oncol Res. 1998;10:245–54.

    CAS  PubMed  Google Scholar 

  38. Papetti M, Augenlicht LH. MYBL2, a link between proliferation and differentiation in maturing colon epithelial cells. J Cell Physiol. 2011;226(3):785–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Swiderek E, Kalas W, Wysokinska E, Pawlak A, Rak J, Strzadala L. The interplay between epigenetic silencing, oncogenic KRas and HIF-1 regulatory pathways in control of BNIP3 expression in human colorectal cancer cells. Biochem Biophys Res Commun. 2013;441(4):707–12.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Gong W, Qing H, et al. p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol. 2010;31(6):575–82.

    Article  CAS  PubMed  Google Scholar 

  41. Miyoshi N, Ishii H, Mimori K, et al. TGM2 is a novel marker for prognosis and therapeutic target in colorectal cancer. Ann Surg Oncol. 2010;17(4):967–72.

    Article  PubMed  Google Scholar 

  42. Koshiyama A, Ichibangase T, Imai K. Comprehensive fluorogenic derivatization-liquid chromatography/tandem mass spectrometry proteomic analysis of colorectal cancer cell to identify biomarker candidate. Biomed Chromatogr. 2013;27(4):440–50.

    Article  CAS  PubMed  Google Scholar 

  43. Eldai H, Periyasamy S, Al Qarni S, et al. Novel genes associated with colorectal cancer are revealed by high resolution cytogenetic analysis in a patient specific manner. PLoS One. 2013;8(10):e76251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Clemo NK, Collard TJ, Southern SL, et al. BAG-1 is up-regulated in colorectal tumour progression and promotes colorectal tumour cell survival through increased NF-kappaB activity. Carcinogenesis. 2008;29(4):849–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by Chi Mei Medical Center (CMFHR10303) and the Ministry of Health and Welfare (MOHW103-TD-B-111-05)

Conflict Of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chien-Feng Li or Li-Jung Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheu, MJ., Li, CF., Lin, CY. et al. Overexpression of ANXA1 confers independent negative prognostic impact in rectal cancers receiving concurrent chemoradiotherapy. Tumor Biol. 35, 7755–7763 (2014). https://doi.org/10.1007/s13277-014-2032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2032-8

Keywords

Navigation