Advertisement

Tumor Biology

, Volume 35, Issue 8, pp 7423–7427 | Cite as

Transcriptome profiling of the cancer and normal tissues from gastric cancer patients by deep sequencing

  • Fei-gong Zhang
  • Zhi-Ying He
  • Qiang Wang
Research Article

Abstract

Gastric cancer is the second highest cause of global cancer mortality. Genome-wide screening of transcriptome dysregulation between cancer and normal tissues would provide insights into the molecular basis of gastric cancer initiation and progression. Recently, next-generation sequencing technique has started to revolutionize biomedical studies. RNA-seq method has become a superior approach in cancer studies, which enables accurate measurement of gene expression levels. In this work, we used RNA-seq data from tumor and matched normal samples to investigate their transcriptional changes. We totally identified 114 significantly differentially expressed genes, and these genes are highly enriched in some gene ontology (GO) categories, such as “digestive system process,” “regulation of body fluid levels,” “secretion,” “digestion,” etc. This study provided the preliminary survey of the transcriptome of Chinese gastric cancer patients, which provides better insights into the complexity of regulatory changes during tumorgenesis.

Keywords

Gastric cancer RNA-seq method Mortality 

Supplementary material

13277_2014_2003_MOESM1_ESM.xlsx (14 kb)
Table S1 (XLSX 14 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet. 2009;374:477–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst. 2008;100:1184–7.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Compare D, Rocco A, Nardone G. Risk factors in gastric cancer. Eur Rev Med Pharmacol Sci. 2010;14:302–8.PubMedGoogle Scholar
  6. 6.
    Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 2002;62:233–40.PubMedGoogle Scholar
  7. 7.
    Jazaeri AA, Yee CJ, Sotiriou C, Brantley KR, Boyd J, Liu ET. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst. 2002;94:990–1000.PubMedCrossRefGoogle Scholar
  8. 8.
    Koh KH, Rhee H, Kang HJ, Yang E, You KT, Lee H, et al. Differential gene expression profiles of metastases in paired primary and metastatic colorectal carcinomas. Oncology. 2008;75:92–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Valk K, Vooder T, Kolde R, Reintam MA, Petzold C, Vilo J, et al. Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology. 2010;79:283–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinforma. 2010;11:485.CrossRefGoogle Scholar
  12. 12.
    Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Langmead B. Aligning short sequencing reads with Bowtie. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis … [et al.], Chapter 11, Unit 11 17; 2010.Google Scholar
  14. 14.
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ferreira JA. The Benjamini-Hochberg method in the case of discrete test statistics. Int J Biostat. 2007;3(Article 11).Google Scholar
  16. 16.
    Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Li RQ, Li YR, Fang XD, Yang HM, Wang J, Kristiansen K, et al. SNP detection for massively parallel whole-genome resequencing. Genome Res. 2009;19:1124–32.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 1994;54:3845–52.PubMedGoogle Scholar
  19. 19.
    Cui J, Chen Y, Chou WC, Sun L, Chen L, Suo J, et al. An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res. 2011;39:1197–207.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bass BL. RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem. 2002;71:817–46.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Semb H, Christofori G. The tumor-suppressor function of E-cadherin. Am J Hum Genet. 1998;63:1588–93.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of General Surgery, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
  2. 2.Department of Cell BiologySecond Military Medical UniversityShanghaiChina

Personalised recommendations