Tumor Biology

, Volume 35, Issue 8, pp 7491–7497 | Cite as

Efficacy of Cisplatin-loaded poly butyl cyanoacrylate nanoparticles on the ovarian cancer: an in vitro study

  • Seyed Kazem Bagherpour Doun
  • Seyed Ebrahim Alavi
  • Maedeh Koohi Moftakhari Esfahani
  • Hasan Ebrahimi Shahmabadi
  • Fatemeh Alavi
  • Somaye Hamzei
Research Article

Abstract

One of the main challenges of treatment of ovarian cancer is initial response to treatment and then acquisition of resistance to Cisplatin. Nanotechnology-based approaches are considered as one way to overcome drug resistance. In this study, the cytotoxicity effects of Cisplatin-loaded poly butyl cyanoacrylate (PBCA) nanoparticles (NPs) on the ovarian cancer cell line A2780cp resistant to Cisplatin were studied. NPs were synthesized by miniemulsion polymerization method. Size, size distribution and zeta potential of NPs were estimated as 489 nm, 0.429, and −20 mV, respectively. Drug loading and encapsulation efficiency were recognized as 5 % and 25 %, respectively. Drug release pattern (3.18 % release after 51 h) demonstrated high level of retention. Toxicological studies showed that cytotoxicity of the nanodrug Cisplatin was about three times as much as that of a free drug. Moreover, NPs presented acceptable stability after 2 months. The results of study suggest the use of this formulation for in vivo experiments.

Keywords

Ovarian cancer Cisplatin PBCA NPs Miniemulsion 

Notes

Conflicts of interest

None

References

  1. 1.
    Kim JH, Chung HH, Jeong MS, Song MR, Kang KW, Kim JS. One step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles. Int J Nanomed. 2013;8:2247–57.Google Scholar
  2. 2.
    Zhang J, Kan Y, Tian Y, Wang Z, Zhang J. Effects of poly (ADP ribosyl) polymerase (PARP) inhibitor on cisplatin resistance and proliferation of the ovariancancer C13* cells. Indian J Med Res. 2013;137:527–32.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Giaccone G. Clinical perspectives on platinum resistance. Drugs. 2000;59:9–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Saleh RM, Awadin WF, Elseady YY, Waheish FE. Renal and cardiovascular damage induced by cisplatin in rats. Life Sci J. 2014;11:191–203.Google Scholar
  5. 5.
    Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, et al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed Engl. 2009;48:6494–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Sutradhar KB, and Amin MDL. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014;2014: ID 939378.Google Scholar
  7. 7.
    Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, et al. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res. 2012;18:3229–41.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bandak S, Goren D, Horowitz A, Tzemach D, Gabizon A. Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anticancer Drugs. 1999;10:911–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Newman MS, Colbern GT, Working PK, Engbers C, Amantea MA. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol. 1999;43:1–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Vaage J, Donovan D, Wipff E, Abra R, Colbern G, Uster P, et al. Therapy of a xenografted human colonic carcinoma using cisplatin or doxorubicin encapsulated in long-circulating pegylated stealth liposomes. Int J Cancer. 1999;80:134–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Hirai M, Minematsu H, Hiramatsu Y, Kitagawa H, Otani T, Iwashita S, et al. Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells. Int J Pharm. 2010;391:274–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang CY, Chen CM, Lee YD. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int J Pharm. 2007;338:267–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Andrieux K, Couvreur P. Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood–brain barrier. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:463–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Man W, Frochot C, Dellacherie E, Marie E. Well-defined poly(butyl cyanoacrylate) nanoparticles via miniemulsion polymerization. Macromol Symp. 2009;281:39–46.CrossRefGoogle Scholar
  15. 15.
    Wu M, Dellacherie E, Durand A, Marie E. Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization 2. PEG-based surfactants. Colloids Surf B: Biointerfaces. 2009;69:147–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Antonietti M, Landfester K. Polyreactions in miniemulsions. Prog Polym Sci. 2002;27:689–757.CrossRefGoogle Scholar
  17. 17.
    Savrikar SS, Lagad CE. Study of preparation and standardization of ‘Maadhutailika Basti’ with special reference to emulsion stability. Ayu. 2010;31:1–6.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fontes G, Amaral P, Nele M, Coelho M. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol. 2010;2010:1–8.Google Scholar
  19. 19.
    Müller RH, Lherm C, Herbort J, Couvreur P. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials. 1990;11:590–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Macka M, Borák J, Seménková L, Kiss F. Decomposition of cisplatin in aqueous solutions containing chlorides by ultrasonic energy and light. J Pharm Sci. 1994;83:815–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Seyed Kazem Bagherpour Doun
    • 1
    • 2
  • Seyed Ebrahim Alavi
    • 2
  • Maedeh Koohi Moftakhari Esfahani
    • 2
  • Hasan Ebrahimi Shahmabadi
    • 2
  • Fatemeh Alavi
    • 3
  • Somaye Hamzei
    • 2
  1. 1.Department of Biochemistry and BiophysicsBabol University of Medical ScienceBabolIran
  2. 2.Department of Pilot NanobiotechnologyPasteur Institute of IranTehranIran
  3. 3.Department of Chemistry University of TehranTehranIran

Personalised recommendations