Advertisement

Tumor Biology

, Volume 35, Issue 8, pp 7635–7644 | Cite as

Ki-67, TGF-β1, and elastin content are significantly altered in lip carcinogenesis

  • Gabriela Salvadori
  • Jean Nunes dos Santos
  • Marco Antonio Trevizani Martins
  • Artur Cunha Vasconcelos
  • Luise Meurer
  • Pantelis Varvaki Rados
  • Vinicius Coelho Carrard
  • Manoela Domingues Martins
Research Article

Abstract

Epithelial changes observed in actinic cheilitis (AC) and lower lip squamous cell carcinoma (LLSCC) have been studied using different markers in order to observe diagnostic and prognostic factors for both lesions. The aim of the present study was to analyze Ki-67, TGF-β1, and elastin content in AC and LLSCC to determine the possible role of these proteins in lip carcinogenesis. Medical records of 29 cases of AC and 53 cases of LLSCC were analyzed. Lesions were classified according histological pattern and submitted to immunostaining for Ki-67, TGF-β1, and elastin. Different percentages of Ki-67-positive cells were found in AC depending on the degree of epithelial dysplasia (p < 0.01). An association was also found between the percentage of Ki-67-positive cells and tumor grade in LLSCC (p < 0.01). An inverse correlation was found between Ki-67 and TGF-β1 in AC and LLSCC (p < 0.01). Elastosis was thinner and more discontinuous in LLSCC in comparison to AC, and this difference in the elastin immunolabeling pattern was statistically significant between groups (p < 0.01). The present findings indicate that changes in Ki-67 and TGF-β1 content contribute to lip carcinogenesis. Furthermore, elastin content reflects changes in the extracellular matrix in both AC and LLSCC.

Keywords

Oral cancer Prognostic biomarkers Potentially malignant disorders 

Notes

Acknowledgments

This study was supported by the Postgraduate Research Group of the Porto Alegre University Hospital (GPPG/FIPE: 12–0176). Santos JN, Meurer L, and Martins MD are research fellows at Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. The author’s would like to thank Dr. Pablo Agustin Vargas (FOP-UNICAMP) for his help with photomicrographs.

Conflicts of interest

None

References

  1. 1.
    Chen YK, Yang SH, Huang AH, Hsue SS, Lin LM. Aberrant expression in multiple components of the transforming growth factor-β1-induced Smad signaling pathway during 7,12-dimethylbenz[a]anthracene-induced hamster buccal-pouch squamous-cell carcinogenesis. Oral Oncol. 2011;47:262–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Huber MA. White oral lesions, actinic cheilitis, and leukoplakia: confusions in terminology and definition: facts and controversies. Clin Dermatol. 2010;28:262–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Jorge Júnior J, de Almeida OP, Bozzo L, Scully C, Graner E. Oral mucosal health and disease in institutionalized elderly in Brazil. Community Dent Oral Epidemiol. 1991;19(3):173–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Junqueira JL, Bönecker M, Furuse C, Morais Pde C, Flório FM, Cury PR, et al. Actinic cheilitis among agricultural workers in Campinas, Brazil. Community Dent Health. 2011;28(1):60–3.PubMedGoogle Scholar
  5. 5.
    Miranda AM, Soares LG, Ferrari TM, Silva DG, Falabella ME, Tinoco EM. Prevalence of actinic cheilitis in a population of agricultural sugarcane workers. Acta Odontol Latinoam. 2012;25(2):201–6.PubMedGoogle Scholar
  6. 6.
    de Souza Lucena EE, Costa DC, da Silveira EJ, Lima KC. Prevalence and factors associated to actinic cheilitis in beach workers. Oral Dis. 2012;18(6):575–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Abreu MA, Silva OM, Neto Pimentel DR, Hirata CH, Weckx LL, Alchorne MM, et al. Actinic cheilitis adjacent to squamous carcinoma of the lips as an indicator of prognosis. Braz J Otorhinolaryngol. 2006;72(6):767–71.PubMedGoogle Scholar
  8. 8.
    Martins-Filho PR, Da Silva LC, Piva MR. The prevalence of actinic cheilitis in farmers in a semi-arid northeastern region of Brazil. Int J Dermatol. 2011;50(9):1109–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Malaspina TS, Gasparoto TH, Costa MR, de Melo EF, Ikoma Jr MR, Damante JH, et al. Enhanced programmed death 1 (PD-1) and PD-1 ligand (PD-L1) expression in patients with actinic cheilitis and oral squamous cell carcinoma. Cancer Immunol Immunother. 2011;60:965–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Gonzalez-Moles MA, Ruiz-Avila I, Gil-Montoya JA, Esteban F, Bravo M. Analysis of Ki-67 expression in oral squamous cell carcinoma: why Ki-67 is not a prognostic indicator. Oral Oncol. 2010;46:525–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Martínez A, Brethauer U, Rojas IG, Spencer M, Mucientes F, et al. Expression of apoptotic and cell proliferation regulatory proteins in actinic cheilitis. J Oral Pathol Med. 2005;34:257–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Raju B, Mehrotra R, Oijordsbakken G, Al-Sharabi AK, Vasstrand EN, Ibrahim SO. Expression of p53, cyclin D1 and Ki-67 in pre-malignant and malignant oral lesions: association with clinicopathological parameters. Anticancer Res. 2005;25:4699–706.PubMedGoogle Scholar
  13. 13.
    Araújo CP, Gurgel CA, Ramos EA, Freitas VS, Barbosa Ade Jr A, Ramalho LM, et al. Accumulation of CD1a-positive Langerhans cells and mast cells in actinic cheilitis. J Mol Histol. 2010;41:357–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Saito K, Mori S, Tanda N, Sakamoto S. Expression of p53 protein and Ki- 67 antigen in gingival hyperplasia induced by nifedipine and phenytoin. J Periodontol. 1999;70:581–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Gueiros LA, Coletta RD, Kowalski LP, Lopes MA. Clinicopathological features and proliferation markers in tongue squamous cell carcinomas. Int J Oral Maxillofac Surg. 2011;40(5):510–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Beck C, Schreiber H, Rowley D. Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech. 2001;52:387–95.PubMedCrossRefGoogle Scholar
  17. 17.
    Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest. 2005;128:585–90.CrossRefGoogle Scholar
  18. 18.
    Kim HS, Shang T, Chen Z, Pflugfelder SC, Li DQ. TGF-beta1 stimulates production of gelatinase (MMP-9), collagenases (MMP-1, −13) and stromelysins (MMP-3, −10, −11) by human corneal epithelial cells. Exp Eye Res. 2004;79:263–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu J, Lamouille S, Derynck R. TGF beta induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Kellermann MG, Sobral LM, da Silva SD, Zecchin KG, Graner E, Lopes MA, et al. Mutual paracrine effects of oral squamous cell carcinoma cells and normal oral fibroblasts: induction of fibroblast to myofibroblast transdifferentiation and modulation of tumor cell proliferation. Oral Oncol. 2008;44(5):509–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Mincione G, Di Marcantonio MC, Artese L, Vianale G, Piccirelli A, Piccirilli M, et al. Loss of expression of TGF-ß1, TßRI, and TßRII correlates with differentiation in human oral squamous cell carcinomas. Int J Oncol. 2008;32:323–33.PubMedGoogle Scholar
  22. 22.
    Akhurst RJ, Derynck R. TGF-b signaling in cancer—a double edged sword. Trends Cell Biol. 2001;11:44–51.Google Scholar
  23. 23.
    Sgarbi FC, Bertini F, de Tera TM, Cavalcante AS. Morphology of collagen fibers and elastic system fibers in actinic cheilitis. Indian J Dent Res. 2010;21:518–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Araújo CP, Xavier FCA, Gurgel CAS, Ramos EAG, Freitas VS, Schlaepfer-Salles CB, et al. Elastin accumulation in actinic cheilitis with different degrees of epithelial dysplasia. Int J Morphol. 2012;30:627–33.CrossRefGoogle Scholar
  25. 25.
    Fantasia J, Lin CB, Wiwi C, Kaur S, Hu YP, Zhang J, et al. Differential levels of elastin fibers and TGF-β signaling in the skin of Caucasians and African Americans. J Dermatol Sci. 2013;70(3):159–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Larroque-Cardoso P, Mucher E, Grazide MH, Josse G, Schmitt AM, Nadal-Wolbold F, Zarkovic K, Salvayre R, Nègre-Salvayre A. 4-Hydroxynonenal impairs transforming growth factor-β1-induced elastin synthesis via epidermal growth factor receptor activation in human and murine fibroblasts. Free Radic Biol Med. 2014 Feb 20. pii: S0891-5849(14)00092-6.Google Scholar
  27. 27.
    Barnes L et al. World Health Organization classification of tumours. Pathology and genetics of tumours of the head and neck. Lyon: IARC Press; 2005.Google Scholar
  28. 28.
    Bryne M, Koppang HS, Lilleng R, Kjaerheim A. Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. J Pathol. 1992;166:375–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Fukushima M, Fukuda Y, Kawamoto M, Yamanaka N. Elastosis in lung carcinoma: immunohistochemical, ultrastructural and clinical studies. Pathol Int. 2000;50:1004–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Rossoe EW, Tebcherani AJ, Sittart JA, Pires MC. Actinic cheilitis: aesthetic and functional comparative evaluation of vermilionectomy using the classic and W-plasty techniques. An Bras Dermatol. 2011;86:65–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Czerninski R, Zini A, Sgan-Cohen HD. Lip cancer: incidence, trends, histology and survival: 1970–2006. Br J Dermatol. 2010;162:1103–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Santos JN, de Sousa SO, Nunes FD, Sotto MN, de Araújo VC. Altered cytokeratin expression in actinic cheilitis. J Cutan Pathol. 2003;30:237–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Cavalcante AS, Anbinder AL, Carvalho YR. Actinic cheilitis: clinical and histological features. J Oral Maxillofac Surg. 2008;66:498–503.PubMedCrossRefGoogle Scholar
  34. 34.
    Marks R, Rennie G, Selwood TS. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet. 1988;1:795–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaugars GE, Pillion T, Svirsky JA, Page DG, Burns JC, Abbey LM. Actinic cheilitis: a review of 152 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:181–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Torres-Rendon A, Roy S, Craig GT, Speight PM. Expression of Mcm2, geminin and Ki67 in normal oral mucosa, oral epithelial dysplasias and their corresponding squamous-cell carcinomas. Br J Cancer. 2009;100:1128–34.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Dwivedi N, Chandra S, Kashyap B, Raj V, Agarwal A, et al. Suprabasal expression of Ki-67 as a marker for the severity of oral epithelial dysplasia and oral squamous cell carcinoma. Contemp Clin Dent. 2013;4:7–12.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Perisanidis C, Perisanidis B, Wrba F, Brandstetter A, El Gazzar S, Papadogeorgakis N, et al. Evaluation of immunohistochemical expression of p53, p21, p27, cyclin D1, and Ki67 in oral and oropharyngeal squamous cell carcinoma. Oral Pathol Med. 2012;41:40–6.CrossRefGoogle Scholar
  39. 39.
    Dissanayake U, Johnson NW, Warnakulasuriya KA. Comparison of cell proliferation in the centre and advancing fronts of oral squamous cell carcinomas using Ki-67 index. Cell Prolif. 2003;36:255–64.PubMedCrossRefGoogle Scholar
  40. 40.
    Schoelch ML, Regezi JA, Dekker NP, Ng IO, McMillan A, Ziober BL, et al. Cell cycle proteins and the development of oral squamous cell carcinoma. Oral Oncol. 1999;35:333–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Wangsa D, Ryott M, Avall-Lundqvist E, Petersson F, Elmberger G, Luo J, et al. Ki-67 expression predicts locoregional recurrence in stage I oral tongue carcinoma. Br J Cancer. 2008;99:1121–8.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Coffey Jr RJ, Bascom CC, Sipes NJ, Graves-Deal R, Weissman BE, Moses HL. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factors. Mol Cell Biol. 1988;8:3088–93.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Chambard JC, Pouyssegur J. TGF-s inhibits growth factor induced DNA synthesis in hamster fibroblasts without affecting the early mitogenic events. J Cell Physiol. 1988;135:101–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Kominsky SL, Doucet M, Brady K, Weber KL. TGF-ß1 promotes the establishment of renal cell carcinoma bone metastasis. J Bone Miner Res. 2007;22:37–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Logullo AF, Nonogaki S, Miguel RE, Kowalski LP, Nishimoto IN, Pasini FS, et al. Transforming growth factor beta1 (TGF-ß1) expression in head and neck squamous cell carcinoma patients as related to prognosis. J Oral Pathol Med. 2003;32:139–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Muro-Cacho CA, Anderson M, Cordero J, Muñoz-Antonia T. Expression of transforming growth factor beta type II receptors in head and neck squamous cell carcinoma. Clin Cancer Res. 1999;5:1243–8.PubMedGoogle Scholar
  47. 47.
    Min BM, Woo KM, Lee G, Park NH. Terminal differentiation of normal human oral keratinocytes is associated with enhanced cellular TGF-s and phospholipase C-γ1 levels and apoptotic cell death. Exp Cell Res. 1999;249:377–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Oh JE, Kook JK, Min BM. Sig-h3 induces keratinocyte differentiation via modulation of involucrin and transglutaminase expression through the integrin α3s1 and the phosphatidylinositol 3-kinase/Akt signalling pathway. J Cell Biochem. 2005;280:21629–37.Google Scholar
  49. 49.
    Becker C, Fantini MC, Neurath MF. TGF-beta as a T cell regulator in colitis and colon cancer. Cytokine Growth Factor Rev. 2006;17(1–2):97–106.PubMedCrossRefGoogle Scholar
  50. 50.
    Whiteside TL. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother. 2014;63(1):67–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Ohshio Y, Teramoto K, Hashimoto M, Kitamura S, Hanaoka J, Kontani K. Inhibition of transforming growth factor-β release from tumor cells reduces their motility associated with epithelial-mesenchymal transition. Oncol Rep. 2013;30(2):1000–6.PubMedGoogle Scholar
  52. 52.
    Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001;7(10):1118–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Knott A, Reuschlein K, Lucius R, Stäb F, Wenck H, Gallinat S. Deregulation of versican and elastin binding protein in solar elastosis. Biogerontology. 2009;10:181–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Philips N, Keller T, Hendrix C, Hamilton S, Arena R, Tuason M, et al. Regulation of the extracellular matrix remodeling by lutein in dermal fibroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts. Arch Dermatol Res. 2007;299:373–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Liotta LA. Tumor invasion and metastases: role of the basement membrane. Warner-Lambert Parke-Davis Award lecture. Am J Pathol. 1984;117:339–48.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Yano K, Kadoya K, Kajiya K, Hong YK, Detmar M. Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br J Dermatol. 2005;152:115–21.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Gabriela Salvadori
    • 1
  • Jean Nunes dos Santos
    • 2
  • Marco Antonio Trevizani Martins
    • 1
  • Artur Cunha Vasconcelos
    • 1
  • Luise Meurer
    • 3
  • Pantelis Varvaki Rados
    • 1
  • Vinicius Coelho Carrard
    • 1
  • Manoela Domingues Martins
    • 1
    • 4
  1. 1.Department of Oral Pathology, School of DentistryFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Oral Pathology, Laboratory of Oral Surgical Pathology, School of DentistryFederal University of BahiaSalvadorBrazil
  3. 3.Department of Pathology, School of MedicineFederal University of Rio Grande do SulPorto AlegreBrazil
  4. 4.School of Dentistry, Oral Pathology DepartmentFederal University of Rio Grande do SulSantana, Porto AlegreBrazil

Personalised recommendations