Advertisement

Tumor Biology

, Volume 35, Issue 7, pp 6901–6912 | Cite as

Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion

  • Mei Xue
  • Xu Li
  • Zhengkun Li
  • Wei Chen
Research Article

Abstract

Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

Keywords

UCA1 Long noncoding RNA Hypoxia HIF-1α Bladder cancer 

Notes

Acknowledgments

This work was supported by the grants (No. 81072104) from the National Natural Science Foundation of China.

Conflicts of interest

None.

Supplementary material

13277_2014_1925_Fig7_ESM.gif (37 kb)
Supplementary Figure 1

a lncRNA-UCA1 expression levels were analyzed by PCR in SKOV3 cells under both normoxia and hypoxia. 18S rRNA was used as the internal control (*P < 0.05, n = 3). Line 1-2 indicated normoxic SKOV3 cells; line 3-4 indicated hypoxic SKOV3 cells. b ChIP showed the interaction of HIF-1α with the lncRNA-UCA1 promoter in hypoxic SKOV3 cells (*P < 0.05, n = 3) (GIF 37 kb)

13277_2014_1925_MOESM1_ESM.tif (3.5 mb)
High Resolution Image (TIFF 3536 kb)

References

  1. 1.
    Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009;107(6):1053–62. doi: 10.1002/jcb.22214.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72. doi: 10.1126/science.1059796.CrossRefPubMedGoogle Scholar
  4. 4.
    Semenza GL. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1–3.CrossRefPubMedGoogle Scholar
  5. 5.
    Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309. doi: 10.1016/j.molcel.2010.09.022.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129(3):465–72. doi: 10.1016/j.cell.2007.04.019.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Jacobs BL, Lee CT, Montie JE. Bladder cancer in 2010: how far have we come? CA Cancer J Clin. 2010;60(4):244–72. doi: 10.3322/caac.20077.CrossRefPubMedGoogle Scholar
  8. 8.
    Gospodarowicz M. Combination therapy: hypoxia modification with radiotherapy for bladder cancer. Nat Rev Clin Oncol. 2011;8(3):129–30. doi: 10.1038/nrclinonc.2011.5.CrossRefPubMedGoogle Scholar
  9. 9.
    Theodoropoulos VE, Lazaris A, Sofras F, Gerzelis I, Tsoukala V, Ghikonti I, et al. Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol. 2004;46(2):200–8. doi: 10.1016/j.eururo.2004.04.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen MC, Lee CF, Huang WH, Chou TC. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1alpha/VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol. 2013;85(9):1278–87. doi: 10.1016/j.bcp.2013.02.009.CrossRefPubMedGoogle Scholar
  11. 11.
    Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19. doi: 10.4161/rna.20481.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42. doi: 10.1053/j.gastro.2006.08.026.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919–27. doi: 10.1016/j.febslet.2008.05.012.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41(Database issue):D983–6. doi: 10.1093/nar/gks1099.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Q, Su M, Lu G, Wang J. The complexity of bladder cancer: long noncoding RNAs are on the stage. Mol Cancer. 2013;12(1):101. doi: 10.1186/1476-4598-12-101.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest. 2010;120(11):3815–7. doi: 10.1172/JCI45105.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Yang C, Li X, Wang Y, Zhao L, Chen W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene. 2012;496(1):8–16. doi: 10.1016/j.gene.2012.01.012.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu W, Zhang S, Li X, Xue M, Cao S, Chen W. Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS ONE. 2013;8(9):e73920. doi: 10.1371/journal.pone.0073920.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21(13):2933–42. doi: 10.1093/bioinformatics/bti473.CrossRefPubMedGoogle Scholar
  22. 22.
    Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 2010;38(Database issue):D105–10. doi: 10.1093/nar/gkp950.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Ching CB, Hansel DE. Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab Invest. 2010;90(10):1406–14. doi: 10.1038/labinvest.2010.133.CrossRefPubMedGoogle Scholar
  24. 24.
    Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Herault A, Dubois T, et al. PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer. 2014;134(8):1776–84. doi: 10.1002/ijc.28518.CrossRefPubMedGoogle Scholar
  25. 25.
    Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10(1–2):13–29. doi: 10.1016/j.drup.2007.01.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE. 2007;2(9):e845. doi: 10.1371/journal.pone.0000845.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-Lail R, Fellig Y, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta. 2010;1803(4):443–51. doi: 10.1016/j.bbamcr.2010.01.010.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 2013;49(6):1083–96. doi: 10.1016/j.molcel.2013.01.010.CrossRefPubMedGoogle Scholar
  29. 29.
    Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53(1):88–100. doi: 10.1016/j.molcel.2013.11.004.CrossRefPubMedGoogle Scholar
  30. 30.
    Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85. doi: 10.1038/cdd.2008.21.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Fazilaty H, Gardaneh M, Bahrami T, Salmaninejad A, Behnam B. Crosstalk between breast cancer stem cells and metastatic niche: emerging molecular metastasis pathway? Tumour Biol. 2013;34(4):2019–30. doi: 10.1007/s13277-013-0831-y.CrossRefPubMedGoogle Scholar
  32. 32.
    Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 2013;32(35):4057–63. doi: 10.1038/onc.2012.578.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. doi: 10.1038/nrc1187.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang T, Fan J, Wu K, Zeng J, Sun K, Guan Z, et al. Roles of HIF-1alpha in a novel optical orthotopic spontaneous metastatic bladder cancer animal model. Urol Oncol. 2012;30(6):928–35. doi: 10.1016/j.urolonc.2012.01.003.CrossRefPubMedGoogle Scholar
  35. 35.
    Li Y, Zhao X, Tang H, Zhong Z, Zhang L, Xu R, et al. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells. Urol Int. 2012;88(1):95–101. doi: 10.1159/000331881.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Center for Translational Medicine, The First Affiliated Hospital, School of MedicineXi’an Jiaotong UniversityXi’anPeoples Republic of China
  2. 2.Clinical Laboratory, The First Affiliated Hospital, School of MedicineXi’an Jiaotong UniversityXi’anPeoples Republic of China

Personalised recommendations