Skip to main content

Advertisement

Log in

Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion

  • Research Article
  • Published:
Tumor Biology

Abstract

Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009;107(6):1053–62. doi:10.1002/jcb.22214.

    Article  CAS  PubMed  Google Scholar 

  2. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72. doi:10.1126/science.1059796.

    Article  CAS  PubMed  Google Scholar 

  4. Semenza GL. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  5. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309. doi:10.1016/j.molcel.2010.09.022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129(3):465–72. doi:10.1016/j.cell.2007.04.019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Jacobs BL, Lee CT, Montie JE. Bladder cancer in 2010: how far have we come? CA Cancer J Clin. 2010;60(4):244–72. doi:10.3322/caac.20077.

    Article  PubMed  Google Scholar 

  8. Gospodarowicz M. Combination therapy: hypoxia modification with radiotherapy for bladder cancer. Nat Rev Clin Oncol. 2011;8(3):129–30. doi:10.1038/nrclinonc.2011.5.

    Article  PubMed  Google Scholar 

  9. Theodoropoulos VE, Lazaris A, Sofras F, Gerzelis I, Tsoukala V, Ghikonti I, et al. Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol. 2004;46(2):200–8. doi:10.1016/j.eururo.2004.04.008.

    Article  CAS  PubMed  Google Scholar 

  10. Chen MC, Lee CF, Huang WH, Chou TC. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1alpha/VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol. 2013;85(9):1278–87. doi:10.1016/j.bcp.2013.02.009.

    Article  CAS  PubMed  Google Scholar 

  11. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19. doi:10.4161/rna.20481.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42. doi:10.1053/j.gastro.2006.08.026.

    Article  CAS  PubMed  Google Scholar 

  15. Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919–27. doi:10.1016/j.febslet.2008.05.012.

    Article  CAS  PubMed  Google Scholar 

  16. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41(Database issue):D983–6. doi:10.1093/nar/gks1099.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhang Q, Su M, Lu G, Wang J. The complexity of bladder cancer: long noncoding RNAs are on the stage. Mol Cancer. 2013;12(1):101. doi:10.1186/1476-4598-12-101.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest. 2010;120(11):3815–7. doi:10.1172/JCI45105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yang C, Li X, Wang Y, Zhao L, Chen W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene. 2012;496(1):8–16. doi:10.1016/j.gene.2012.01.012.

    Article  CAS  PubMed  Google Scholar 

  20. Wu W, Zhang S, Li X, Xue M, Cao S, Chen W. Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS ONE. 2013;8(9):e73920. doi:10.1371/journal.pone.0073920.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21(13):2933–42. doi:10.1093/bioinformatics/bti473.

    Article  CAS  PubMed  Google Scholar 

  22. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 2010;38(Database issue):D105–10. doi:10.1093/nar/gkp950.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ching CB, Hansel DE. Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab Invest. 2010;90(10):1406–14. doi:10.1038/labinvest.2010.133.

    Article  CAS  PubMed  Google Scholar 

  24. Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Herault A, Dubois T, et al. PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer. 2014;134(8):1776–84. doi:10.1002/ijc.28518.

    Article  CAS  PubMed  Google Scholar 

  25. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10(1–2):13–29. doi:10.1016/j.drup.2007.01.003.

    Article  CAS  PubMed  Google Scholar 

  26. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE. 2007;2(9):e845. doi:10.1371/journal.pone.0000845.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-Lail R, Fellig Y, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta. 2010;1803(4):443–51. doi:10.1016/j.bbamcr.2010.01.010.

    Article  CAS  PubMed  Google Scholar 

  28. Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 2013;49(6):1083–96. doi:10.1016/j.molcel.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  29. Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53(1):88–100. doi:10.1016/j.molcel.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  30. Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85. doi:10.1038/cdd.2008.21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fazilaty H, Gardaneh M, Bahrami T, Salmaninejad A, Behnam B. Crosstalk between breast cancer stem cells and metastatic niche: emerging molecular metastasis pathway? Tumour Biol. 2013;34(4):2019–30. doi:10.1007/s13277-013-0831-y.

    Article  CAS  PubMed  Google Scholar 

  32. Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 2013;32(35):4057–63. doi:10.1038/onc.2012.578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. doi:10.1038/nrc1187.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang T, Fan J, Wu K, Zeng J, Sun K, Guan Z, et al. Roles of HIF-1alpha in a novel optical orthotopic spontaneous metastatic bladder cancer animal model. Urol Oncol. 2012;30(6):928–35. doi:10.1016/j.urolonc.2012.01.003.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Zhao X, Tang H, Zhong Z, Zhang L, Xu R, et al. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells. Urol Int. 2012;88(1):95–101. doi:10.1159/000331881.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants (No. 81072104) from the National Natural Science Foundation of China.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

a lncRNA-UCA1 expression levels were analyzed by PCR in SKOV3 cells under both normoxia and hypoxia. 18S rRNA was used as the internal control (*P < 0.05, n = 3). Line 1-2 indicated normoxic SKOV3 cells; line 3-4 indicated hypoxic SKOV3 cells. b ChIP showed the interaction of HIF-1α with the lncRNA-UCA1 promoter in hypoxic SKOV3 cells (*P < 0.05, n = 3) (GIF 37 kb)

High Resolution Image (TIFF 3536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Li, X., Li, Z. et al. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumor Biol. 35, 6901–6912 (2014). https://doi.org/10.1007/s13277-014-1925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1925-x

Keywords

Navigation