Tumor Biology

, Volume 35, Issue 7, pp 7195–7200 | Cite as

RETRACTED ARTICLE: Inhibition of FoxO1 nuclear exclusion prevents metastasis of Glioblastoma

  • Jin Chen
  • Qin Huang
  • Feng Wang
Research Article


Glioblastoma is the most aggressive malignant primary brain tumor in humans, with extremely poor patient survival. Although previous studies have demonstrated that expression of matrix metalloproteinase-9 (MMP9) in glioblastoma promotes cancer metastasis, the upstream molecular signaling cascades that control activation of MMP9 remain largely unknown. Here, we used a human glioblastoma line, A-172, to examine molecular signaling to activate MMP9. We found that epidermal growth factor (EGF)-induced activation of epidermal growth factor receptor (EGFR) in A-172 cells activated MMP9, resulting in an increase in cancer invasiveness. A specific inhibitor for EGFR efficiently blocked EGF-induced activation of MMP9 and then cancer invasiveness. Moreover, an inhibitor for phosphatidylinositol 3-kinase (PI-3 K)/protein kinase B (Akt) significantly inhibited the EGF-induced activation of MMP9. Furthermore, nuclear exclusion of a major Akt downstream target, Forkhead box protein O1 (FoxO1), was induced by Akt activation, which could be inhibited by either an EGFR inhibitor or by PI-3 K/Akt inhibitor. An expression of a constitutive nuclear form of FoxO1 significantly inhibited MMP9 activation induced by EGF. Taken together, these findings suggest that EGF/EGFR signaling activates downstream PI-3 K/Akt to induce FoxO1 nuclear exclusion, which activates MMP9 to promote glioblastoma invasiveness. Thus, FoxO1 appears to be a novel therapeutic target for inhibiting metastasis of glioblastoma.


Glioblastoma FoxO1 PI-3 K Akt 


Conflicts of interest



  1. 1.
    Schonberg DL, Bao S, Rich JN. Genomics informs glioblastoma biology. Nat Genet. 2013;45:1105–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Tsatas D, Kanagasundaram V, Kaye A, Novak U. Egf receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci. 2002;9:282–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Carpentier C, Laigle-Donadey F, Marie Y, Auger N, Benouaich-Amiel A, Lejeune J, et al. Polymorphism in Sp1 recognition site of the EGF receptor gene promoter and risk of glioblastoma. Neurology. 2006;67:872–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 2006;3:e6.CrossRefPubMedGoogle Scholar
  5. 5.
    Vauleon E, Auger N, Benouaich-Amiel A, Laigle-Donadey F, Kaloshi G, Lejeune J, et al. The 61 A/G EGF polymorphism is functional but is neither a prognostic marker nor a risk factor for glioblastoma. Cancer Genet Cytogenet. 2007;172:33–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, et al. EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol. 2009;625:23–30.CrossRefPubMedGoogle Scholar
  7. 7.
    Sjostrom S, Andersson U, Liu Y, Brannstrom T, Broholm H, Johansen C, et al. Genetic variations in EGF and EGFR and glioblastoma outcome. Neuro-Oncol. 2010;12:815–21.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Prabhu A, Sarcar B, Kahali S, Shan Y, Chinnaiyan P. Targeting the unfolded protein response in glioblastoma cells with the fusion protein EGF-SubA. PLoS One. 2012;7:e52265.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cornez I, Joel M, Tasken K, Langmoen IA, Glover JC, Berge T. EGF signalling and rapamycin-mediated mtor inhibition in glioblastoma multiforme evaluated by phospho-specific flow cytometry. J Neurooncol. 2013;112:49–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, Li G, Jensen KC, Vogel H, Wei-Xu L, Skirboll SS, Wong AJ. Targeting a glioblastoma cancer stem cell population defined by EGF receptor variant III. Cancer Res 2013.Google Scholar
  11. 11.
    Lee CC, Lai JH, Hueng DY, Ma HI, Chung Y, Sun YY, et al. Disrupting the CXCL12/CXCR4 axis disturbs the characteristics of glioblastoma stem-like cells of rat RG2 glioblastoma. Cancer Cell Int. 2013;13:85.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu Q, Li G, Li R, Shen J, He Q, Deng L, et al. Il-6 promotion of glioblastoma cell invasion and angiogenesis in U251 and T98G cell lines. J Neurooncol. 2010;100:165–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Papi A, Bartolini G, Ammar K, Guerra F, Ferreri AM, Rocchi P, et al. Inhibitory effects of retinoic acid and IIF on growth, migration and invasiveness in the U87MG human glioblastoma cell line. Oncol Rep. 2007;18:1015–21.PubMedGoogle Scholar
  14. 14.
    Tang ZP, Cui QZ, Dong QZ, Xu K, Wang EH. Ataxia-telangiectasia group D complementing gene (ATDC) upregulates matrix metalloproteinase 9 (MMP-9) to promote lung cancer cell invasion by activating ERK and JNK pathways. Tumour Biol. 2013;34:2835–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Sutnar A, Pesta M, Liska V, Treska V, Skalicky T, Kormunda S, et al. Clinical relevance of the expression of mRNA of MMP-7, MMP-9, TIMP-1, TIMP-2 and CEA tissue samples from colorectal liver metastases. Tumour Biol. 2007;28:247–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Schutz A, Schneidenbach D, Aust G, Tannapfel A, Steinert M, Wittekind C. Differential expression and activity status of MMP-1, MMP-2 and MMP-9 in tumor and stromal cells of squamous cell carcinomas of the lung. Tumour Biol. 2002;23:179–84.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim S, Choi JH, Lim HI, Lee SK, Kim WW, Cho S, et al. EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line. Cell Signal. 2009;21:892–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance. J Cell Physiol. 2009;218:460–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Myatt SS, Lam EW. The emerging roles of Forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7:847–59.CrossRefPubMedGoogle Scholar
  20. 20.
    Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Biggs 3rd WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase b/akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor fkhr1. Proc Natl Acad Sci U S A. 1999;96:7421–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N, et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994;56:72–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Tian XX, Chan JY, Pang JC, Chen J, He JH, To TS, et al. Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor. Br J Cancer. 1999;81:994–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, et al. Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘iressa’). Cancer Lett. 2003;202:43–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Stish BJ, Oh S, Vallera DA. Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human IL-13 and EGF receptors in a mouse xenograft model. J Neurooncol. 2008;87:51–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Ozer BH, Wiepz GJ, Bertics PJ. Activity and cellular localization of an oncogenic glioblastoma multiforme-associated EGF receptor mutant possessing a duplicated kinase domain. Oncogene. 2010;29:855–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Hu J, Jo M, Cavenee WK, Furnari F, VandenBerg SR, Gonias SL. Crosstalk between the urokinase-type plasminogen activator receptor and EGF receptor variant III supports survival and growth of glioblastoma cells. Proc Natl Acad Sci U S A. 2011;108:15984–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fenton TR, Nathanson D, Ponte de Albuquerque C, Kuga D, Iwanami A, Dang J, et al. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the pTEN tumor suppressor at tyrosine 240. Proc Natl Acad Sci U S A. 2012;109:14164–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zheng Y, Yang W, Aldape K, He J, Lu Z. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (VCAM-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem. 2013;288:31488–95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Neurosurgery DepartmentThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina

Personalised recommendations