Tumor Biology

, Volume 35, Issue 9, pp 9269–9279 | Cite as

MEK inhibitor effective against proliferation in breast cancer cell

  • Yan Zhou
  • Hai-yan Hu
  • Wei Meng
  • Ling Jiang
  • Xing Zhang
  • Jing-jing Sha
  • Zhigang Lu
  • Yang Yao
Research Article


The targeted small-molecule drug AZD6244 is an allosteric, ATP-noncompetitive inhibitor of MEK1/2 that has shown activity against several malignant tumors. Here, we report that AZD6244 repressed cell growth and induced apoptosis and G1-phase arrest in the breast cancer cell lines MDA-MB-231 and HCC1937. Using microRNA (miRNA) arrays and quantitative RT-PCR, we found that miR-203 was up-regulated after AZD6244 treatment. In accordance with bioinformatics and luciferase activity analyses, CUL1 was found to be the direct target of miR-203. Furthermore, miR-203 inhibition and CUL1 overexpression reversed the cytotoxicity of AZD6244 on the MDA-MB-231 and HCC1937 cells. Collectively, our data indicate that miR-203 mediates the AZD6244-induced cytotoxicity of breast cancer cells and that the MEK/ERK/miR-203/CUL1 signaling pathway may participate in this process.


AZD6244 Breast cancer miR-203 CUL1 



This study was supported by the National Natural Science Foundation of China (81072176 and 81372873).

Conflicts of interest



  1. 1.
    Criscitiello C, Gelao L, Viale G, Esposito A, Curigliano G. Investigational platelet-derived growth factor receptor kinase inhibitors in breast cancer therapy. Expert Opin Investig Drugs. 2014 Mar 5. [Epub ahead of print].Google Scholar
  2. 2.
    Austreid E, Lonning PE, Eikesdal HP. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin Pharmacother. 2014;15(5):681–700.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu D, He J, Yuan Z, Wang S, Peng R, Shi Y, et al. EGFR expression correlates with decreased disease-free survival in triple-negative breast cancer: a retrospective analysis based on a tissue microarray. Med Oncol. 2011;29(2):401–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.CrossRefPubMedGoogle Scholar
  5. 5.
    Han H, Du B, Pan X, Liu J, Zhao Q, Lian X, et al. CADPE inhibits PMA stimulated gastric carcinoma cell invasion and matrix metalloproteinase-9 expression by FAK/MEK/ERK-mediated AP-1 activation. Mol Cancer Res. 2010;8(11):1477–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4:937–47.CrossRefPubMedGoogle Scholar
  7. 7.
    Infante JR, Papadopoulos KP, Bendell JC, Patnaik A, Burris 3rd HA, Rasco D, et al. A phase 1b study of trametinib, an oral Mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. Eur J Cancer. 2013;S0959–8049(13):00223–2.Google Scholar
  8. 8.
    Ambrosini G, Musi E, Ho AL, de Stanchina E, Schwartz GK. Inhibition of mutant GNAQ signaling in uveal melanoma induces AMPK-dependent autophagic cell death. Mol Cancer Ther. 2013;12(5):768–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Migliardi G, Sassi F, Torti D, Galimi F, Zanella ER, Buscarino M, et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectalcarcinomas. Clin Cancer Res. 2012;18(9):2515–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Metro G, Chiari R, Baldi A, De Angelis V, Minotti V, Crinò L. Selumetinib: a promising pharmacologic approach for KRAS-mutant advanced non-small-cell lung cancer. Future Oncol. 2013;9(2):167–77.CrossRefPubMedGoogle Scholar
  11. 11.
    Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Palumbo S, Miracco C, Pirtoli L, Comincini S. Emerging roles of microRNA in modulating cell-death processes in malignant glioma. J Cell Physiol. 2013. doi: 10.1002/jcp.24446.PubMedGoogle Scholar
  13. 13.
    Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, King BL, et. al. miRNAs: Small Genes with Big Potential in Metazoan Phylogenetics. Mol Biol Evol. 2013.Google Scholar
  14. 14.
    Jiang CC, Croft A, Tseng HY, Guo ST, Jin L, Hersey P, et al. Repression of microRNA-768-3p by MEK/ERK signalling contributes to enhanced mRNA translation in human melanoma. Oncogene. 2013. doi: 10.1038/onc.2013.237.Google Scholar
  15. 15.
    Huang F, Fang ZF, Hu XQ, Tang L, Zhou SH, Huang JP. Overexpression of miR-126 promotes the differentiation of mesenchymal stem cells toward endothelial cells via activation of PI3K/Akt and MAPK/ERK pathways and release of paracrine factors. Biol Chem. 2013;394(9):1223–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma revealsmiR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19(2):232–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen Z, Li D, Cheng Q, Ma Z, Jiang B, Peng R, et al. MicroRNA-203 inhibits the proliferation and invasion of U251 glioblastoma cells by directly targeting PLD2. Mol Med Rep. 2014;9(2):503–8.PubMedGoogle Scholar
  18. 18.
    Diao Y, Guo X, Jiang L, Wang G, Zhang C, Wan J, et al. miR-203, a Tumor Suppressor Frequently Down-regulated by Promoter Hypermethylation in Rhabdomyosarcoma. J Biol Chem. 2014;289(1):529–39.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Yu X, Jiang X, Li H, Guo L, Jiang W, Lu SH. et. al. miR-203 Inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1. Stem Cells Dev. 2014 Jan 4. [Epub ahead of print]Google Scholar
  20. 20.
    Witkos TM, Koscianska E, Krzyzosiak WJ. Practical aspects of microRNA target prediction. Curr Mol Med. 2011;11(2):93–109.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Creighton CJ, Nagaraja AK, Hanash SM, Matzuk MM, Gunaratne PH. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA. 2008;14(11):2290–6.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Dow R, Hendley J, Pirkmaier A, Musgrove EA, Germain D. Retinoic acid-mediated growth arrest requires ubiquitylation and degradation of the F-box protein Skp2. J Biol Chem. 2001;276(49):45945–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S, Eymin B. Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels. J Pathol. 2007;213(3):303–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Li W, Ye F, Wang D, Sun X, Tong W, Lian G, et al. Protein predictive signatures for lymph node metastasis of gastric cancer. Int J Cancer. 2013;132(8):1851–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Catalanotti F, Solit DB, Pulitzer MP, Berger MF, Scott SN, Iyriboz T, et al. Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma. Clin Cancer Res. 2013;19(8):2257–64.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Craig DW, O'Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, et al. Genome and transcriptome sequencing in prospective metastatic triple-negative breast canceruncovers therapeutic vulnerabilities. Mol Cancer Ther. 2013;12(1):104–16.CrossRefPubMedGoogle Scholar
  27. 27.
    Garon EB, Finn RS, Hosmer W, Dering J, Ginther C, Adhami S, et al. Identification of common predictive markers of in vitro response to the Mek inhibitor selumetinib (AZD6244; ARRY-142886) in human breast cancer and non-small cell lung cancer cell lines. Mol Cancer Ther. 2010;9(7):1985–94.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Chen HY, Yang YM, Han R, Noble M. MEK1/2 inhibition suppresses tamoxifen toxicity on CNS glial progenitor cells. J Neurosci. 2013;33(38):15069–74.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Zawistowski JS, Nakamura K, Parker JS, Granger DA, Golitz BT, Johnson GL. MicroRNA 9-3p targets β1 integrin to sensitize claudin-low breast cancer cells to MEK inhibition. Mol Cell Biol. 2013;33(11):2260–74.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Karagiannis GS, Weile J, Bader GD, Minta J. Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation. BMC Cardiovasc Disord. 2013;13:4.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Noguchi S, Kumazaki M, Yasui Y, Mori T, Yamada N, Akao Y. MicroRNA-203 Regulates Melanosome Transport and Tyrosinase Expression in Melanoma Cells By Targeting Kinesin Superfamily Protein 5b. J Investig Dermatol. 2013. doi: 10.1038/jid.2013.310.Google Scholar
  32. 32.
    He JH, Li YM, Li YG, Xie XY, Wang L, Chun SY, et al. hsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide. Exp Ther Med. 2013;5(5):1315–21.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Wang C, Wang X, Liang H, Wang T, Yan X, Cao M, et al. miR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCα. PLoS ONE. 2013;8(9):e73985.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B, et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia. 2012;26(4):778–87.Google Scholar
  35. 35.
    Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, et al. BRAF mutation predicts sensitivity to MEK inhibiton. Nature. 2006;439(7074):358–62.Google Scholar
  36. 36.
    Yuen JS, Sim MY, Sim HG, Chong TW, Lau WK, Cheng CW, et al. Combination of ERK inhibitor AZD6244 and low-dose sorafenib in a xenograf modle of human renal cellcarcinoma. Int J Oncol. 2012;41(2):712–20.Google Scholar
  37. 37.
    Hériché JK, Ang D, Bier E, O’Farrell PH. Involvement of an SCFSlmb complex in timely elimination of E2F upon initiation of DNA replication in Drosophila. BMC Genet. 2003;4:9.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Furstenthal L, Swanson C, Kaiser BK, Eldridge AG, Jackson PK. Triggering ubiquitination of a CDK inhibitor at origins of DNA replication. Nat Cell Biol. 2001;3(8):715–22.CrossRefPubMedGoogle Scholar
  39. 39.
    Chen G, Li G. Increased Cul1 expression promotes melanoma cell proliferation through regulating p27 expression. Int J Oncol. 2010;37(5):1339–44.PubMedGoogle Scholar
  40. 40.
    Chen G, Cheng Y, Martinka M, Li G. Cul1 expression is increased in early stages of human melanoma. Pigment Cell Melanoma Res. 2010;23(4):572–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Bai J, Zhou Y, Chen G, Zeng J, Ding J, Tan Y, et al. Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol. 2011;42(3):375–83.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee JG, Kay EP. Involvement of two distinct ubiquitin E3 ligase systems for p27 degradation in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2008;49(1):189–96.CrossRefPubMedGoogle Scholar
  43. 43.
    Plesca D, Mazumder S, Gama V, Matsuyama S, Almasan A. A C-terminal fragment of Cyclin E, generated by caspase-mediated cleavage, is degraded in the absence of a recognizable phosphodegron. J Biol Chem. 2008;283(45):30796–803.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Sun L, Shi L, Wang F, Huangyang P, Si W, Yang J, et al. Substrate phosphorylation and feedback regulation in JFK-promoted p53 destabilization. J Biol Chem. 2011;286(6):4226–35.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Sun L, Shi L, Li W, Yu W, Liang J, Zhang H, et al. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation. Proc Natl Acad Sci U S A. 2009;106(25):10195–200.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Negi S, Kumar A, Thelma BK, Juyal RC. Association of Cullin1 haplotype variants with rheumatoid arthritis and response to methotrexate. Pharmacogenet Genomics. 2011;21(9):590–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhou W, Wei W, Sun Y. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res. 2013;23(5):599–619.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Song MS, Song SJ, Kim SJ, Nakayama K, Nakayama KI, Lim DS. Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition. Oncogene. 2008;27(22):3176–85.Google Scholar
  49. 49.
    Ye CM, Chen S, Payton M, Dickman MB, Verchot J. TGBp3 triggers the unfolded protein response and SKP1-dependent programmed cell death. Mol Plant Pathol. 2013;14(3):241–55.Google Scholar
  50. 50.
    Tian YF, Chen TJ, Lin CY, Chen LT, Lin LC, Hsing CH, et al. SKP2 overexpression is associated with a poor prognosis of rectal cancer treated with chemoradiotherapy and represents a therapeutic target with high potential. Tumour Biol. 2013;34(2):1107–17. Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, ShanghaiShanghai CityChina
  2. 2.Genetic Engineering Institute of Southern Medical UniversityGuangzhou CityChina
  3. 3.Hematology Department of Zhujiang Hospital affiliated to Southern Medical UniversityGuangzhou CityChina

Personalised recommendations