Tumor Biology

, Volume 35, Issue 7, pp 6627–6632 | Cite as

Significant association between interleukin-17A polymorphism and colorectal cancer

  • Inés Omrane
  • Raja Marrakchi
  • Olfa Baroudi
  • Amel Mezlini
  • Hager Ayari
  • Imen Medimegh
  • Nejla Stambouli
  • Nadia Kourda
  • Hassen Bouzaienne
  • Nancy Uhrhammer
  • Karim Bougatef
  • Yves-Jean Jean Bignon
  • Amel Benammar-Elgaaied
Research Article


Interleukin (IL) 17A is an inflammatory cytokine expressed by Th 17 cells and plays a role in tissue inflammation by inducing release of proinflammatory and neutrophil-mobilizing cytokines. We have investigated the association between colorectal cancer and polymorphisms of IL17A (rs2275913. G197A). The study was performed in 241 subjects (102 with colorectal cancer and 139 healthy controls). Genotypes were determined by fluorescent-based restriction fragment length polymorphism method. The association between the molecular features at the gene in relation to tumor and patient clinical characteristics was analyzed. There was a significant difference between the genotype frequencies of IL17A G197A of control subjects (GG 68.34 % and GA + AA 31.65 %) and patients with colorectal cancer (GG 47.05 % and GA + AA 52.94 %) (p = 0.001with odds ratio (OR) 2.45 (1.43–4.11)). IL17A G197A polymorphism is particularly associated with colon cancer. Indeed, the IL17A GG genotype could be considered as a protective factor against colon cancer (p = 0.00001) with OR 3.77 (2.04–6.99). We have noted a significant association of IL17A G197A polymorphism not only with tumor localization (p = 0.003) but also with tumor differentiation (p = 0.0005) in CRC patients. We have also showed a significant association of G197A variant with an increased risk of advanced stage (p = 0.005). Our result suggests that the A allele of IL17A gene is involved in susceptibility to colorectal cancer and is associated with clinical features as tumor location, tumor differentiation, and TNM stage. IL17A polymorphism may serve as biomarker of disease location and progression.


IL17A Polymorphism Biomarker Colorectal cancer Tumor localization Tumor differentiation 



Colorectal cancer


Inflammatory bowel disease


Ulcerative colitis

Th1/17 cells

T helper 1/17 cells


Interleukin A/B/C/D/E/F


Interleukin IL1β/6/8/10


Single nucleotide polymorphism


Nuclear factor κB


Tumor necrosis factor α

TNM stage

Tumor node metastasis stage


Enterotoxigenic Bacteroides fragilis


CpG island hyper-methylation


Progesterone receptor


Vascular endothelial growth factor


Tumor suppressor protein53



We would like to thank all the members of ‘Laboratoire Diagnostic Génétique et Moléculaire, Centre Jean Perrin, Clermont Ferrand, France for their technical assistance.


  1. 1.
    Vasen HF, van der Meulen-de Jong AE, de Vos Tot Nederveen Cappel WH, Oliveira J. Familial colorectal cancer risk: ESMO clinical recommendations. Ann Oncol. 2009;20 Suppl 4:51–3.PubMedGoogle Scholar
  2. 2.
    Carter AB, Misyak SA, Hontecillas R, Bassaganya-Riera J. Dietary modulation of inflammation-induced colorectal cancer through PPARgamma. PPAR Res. 2009;2009:498352.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Tanaka T. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. Int J Inflamm. 2012;2012:658786.CrossRefGoogle Scholar
  4. 4.
    Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer. 2001;91(4):854–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Lakatos PL, Lakatos L. Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol. 2008;14(25):3937–47.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Wilkening S, Tavelin B, Canzian F, Enquist K, Palmqvist R, Altieri A, et al. Interleukin promoter polymorphisms and prognosis in colorectal cancer. Carcinogenesis. 2008;29(6):1202–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Erdman SE, Poutahidis T. Roles for inflammation and regulatory T cells in colon cancer. Toxicol Pathol. 2010;38(1):76–87.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Clevers H. At the crossroads of inflammation and cancer. Cell. 2004;118(6):671–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, et al. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res. 2009;15(7):2248–58.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6(5):327–34.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175–83.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Macarthur M, Hold GL, El-Omar EM. Inflammation and cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol. 2004;286(4):G515–20.Google Scholar
  14. 14.
    Li M, You Q, Wang X. Association between polymorphism of the tumor necrosis factor alpha-308 gene promoter and colon cancer in the Chinese population. Genet Test Mol Biomark. 2011;15(11):743–7.CrossRefGoogle Scholar
  15. 15.
    Cen G, Wu W. Association between tumor necrosis factor-alpha 857C/T polymorphism and gastric cancer: a meta-analysis. Tumour Biol. 2013;47(9):1119–33.Google Scholar
  16. 16.
    Ito H, Kaneko K, Makino R, Konishi K, Kurahashi T, Yamamoto T, et al. Interleukin-1beta gene in esophageal, gastric and colorectal carcinomas. Oncol Rep. 2007;18(2):473–81.PubMedGoogle Scholar
  17. 17.
    El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 2000;404(6776):398–402.CrossRefPubMedGoogle Scholar
  18. 18.
    Cacev T, Radosevic S, Krizanac S, Kapitanovic S. Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis. 2008;29(8):1572–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Lu W, Pan K, Zhang L, Lin D, Miao X, You W. Genetic polymorphisms of interleukin (IL)-1B, IL-1RN, IL-8, IL-10 and tumor necrosis factor alpha and risk of gastric cancer in a Chinese population. Carcinogenesis. 2005;26(3):631–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J, et al. Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res. 2003;63(13):3560–6.PubMedGoogle Scholar
  21. 21.
    Shibata T, Tahara T, Hirata I, Arisawa T. Genetic polymorphism of interleukin-17A and -17 F genes in gastric carcinogenesis. Hum Immunol. 2009;70(7):547–51.CrossRefPubMedGoogle Scholar
  22. 22.
    McGovern DP, Rotter JI, Mei L, Haritunians T, Landers C, Derkowski C, et al. Genetic epistasis of IL23/IL17 pathway genes in Crohn’s disease. Inflamm Bowel Dis. 2009;15(6):883–9.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Yamada H. Current perspectives on the role of IL-17 in autoimmune disease. J Inflamm Res. 2010;3:33–44.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kawaguchi M, Adachi M, Oda N, Kokubu F, Huang SK. IL-17 cytokine family. J Allergy Clin Immunol. 2004;114(6):1265–73. quiz 74.CrossRefPubMedGoogle Scholar
  25. 25.
    Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim SW, Kim ES, Moon CM, Park JJ, Kim TI, Kim WH, et al. Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut. 2011;60(11):1527–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang X, Yu P, Wang Y, Jiang W, Shen F, Wang Y, et al. Genetic polymorphisms of interleukin 17A and interleukin 17 F and their association with inflammatory bowel disease in a Chinese Han population. Inflamm Res. 2013;62(8):743–50.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim ES, Kim SW, Moon CM, Park JJ, Kim TI, Kim WH, et al. Interactions between IL17A, IL23R, and STAT4 polymorphisms confer susceptibility to intestinal Behcet’s disease in Korean population. Life Sci. 2012;90(19–20):740–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Nordang GB, Viken MK, Hollis-Moffatt JE, Merriman TR, Forre OT, Helgetveit K, et al. Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology (Oxford). 2009;48(4):367–70.CrossRefGoogle Scholar
  30. 30.
    Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, Kamiya Y, et al. The influence of polymorphisms of interleukin-17A and interleukin-17 F genes on the susceptibility to ulcerative colitis. J Clin Immunol. 2008;28(1):44–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Wu X, Zeng Z, Chen B, Yu J, Xue L, Hao Y, et al. Association between polymorphisms in interleukin-17A and interleukin-17 F genes and risks of gastric cancer. Int J Cancer. 2010;127(1):86–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, et al. Effect of polymorphisms of IL-17A, -17 F and MIF genes on CpG island hyper-methylation (CIHM) in the human gastric mucosa. Int J Mol Med. 2009;24(4):563–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Quan Y, Zhou B, Wang Y, Duan R, Wang K, Gao Q, et al. Association between IL17 polymorphisms and risk of cervical cancer in Chinese women. Clin Dev Immunol. 2012;2012:258293.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Zhou B, Zhang P, Wang Y, Shi S, Zhang K, Liao H, et al. Interleukin-17 gene polymorphisms are associated with bladder cancer in a Chinese Han population. Mol Carcinog. 2012;52(11):871–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate. 2003;56(3):171–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L, et al. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 2008;10(6):R95.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun. 2008;374(3):533–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette MT, Berrehar F, et al. High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut. 2008;57(6):772–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Huber AK, Jacobson EM, Jazdzewski K, Concepcion ES, Tomer Y. Interleukin (IL)-23 receptor is a major susceptibility gene for Graves' ophthalmopathy: the IL-23/T-helper 17 axis extends to thyroid autoimmunity. J Clin Endocrinol Metab. 2008;93(3):1077–81.Google Scholar
  40. 40.
    Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang L, Jiang Y, Zhang Y, Wang Y, Huang S, Wang Z, et al. Association analysis of IL-17A and IL-17 F polymorphisms in Chinese Han women with breast cancer. PLoS ONE. 2012;7(3):e34400.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Suzuki H, Ogawa H, Miura K, Haneda S, Watanabe K, Ohnuma S, et al. IL-23 directly enhances the proliferative and invasive activities of colorectal carcinoma. Oncol Lett. 2012;4(2):199–204.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Chae WJ, Gibson TF, Zelterman D, Hao L, Henegariu O, Bothwell AL. Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(12):5540–4.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Tong Z, Yang XO, Yan H, Liu W, Niu X, Shi Y, et al. A protective role by interleukin-17 F in colon tumorigenesis. PLoS ONE. 2012;7(4):e34959.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Inés Omrane
    • 1
  • Raja Marrakchi
    • 1
  • Olfa Baroudi
    • 1
  • Amel Mezlini
    • 2
  • Hager Ayari
    • 1
  • Imen Medimegh
    • 1
  • Nejla Stambouli
    • 1
  • Nadia Kourda
    • 3
  • Hassen Bouzaienne
    • 1
  • Nancy Uhrhammer
    • 4
  • Karim Bougatef
    • 1
  • Yves-Jean Jean Bignon
    • 4
  • Amel Benammar-Elgaaied
    • 1
  1. 1.Laboratory of Human Genetics Immunology and Pathology, Faculty of Sciences TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Gastroenterology ServiceSalah Azaiez Hospital of TunisTunisTunisia
  3. 3.Laboratory of Anatomy and PathologyCharles Nicolle Hospital of TunisTunisTunisia
  4. 4.Laboratory of Diagnosis and Molecular GeneticsCentre Jean PerrinClermont-FerrandFrance

Personalised recommendations