Advertisement

Tumor Biology

, Volume 35, Issue 7, pp 7163–7175 | Cite as

Implication of K-ras and p53 in colorectal cancer carcinogenesis in Tunisian population cohort

  • Chaar Ines
  • Ounissi Donia
  • Boughriba Rahma
  • Azza Ben Ammar
  • Amara Sameh
  • Taher Khalfallah
  • Ben hmida Abdelmajid
  • Mzabi Sabeh
  • Bouraoui Saadia
Research Article

Abstract

According to the multistep route of genetic alterations in the colorectal adenoma–carcinoma sequence, the complex K-ras/p53 mutation is one of the first alterations to occur and represent an important genetic event in colorectal cancer (CRC). An evaluation of the mutation spectra in K-ras and p53 gene was effected in 167 Tunisian patients with sporadic CRC to determine whether our populations have similar pattern of genetic alteration as in Maghrebin’s population. Mutation patterns of codon 12–13 of K-ras and exon 5–8 of p53 were analyzed by immunohistochemistry and PCR-SSCP and confirmed by sequencing. Mutations in the K-ras gene were detected in 31.13 % and affect the women more than the men (p = 0.008). Immunostaining showed that expression of p21 ras was correlated with the advanced age (p = 0.004), whereas loss of signal was associated with mucinous histotype (p = 0.003). Kaplan–Meier survival curve found that patients with the K-ras mutation had a shorter survival compared with patients without mutation (p = 0.005). Alteration in p53 was seen in 17.4 % of patients and affects three hot spot codons such as 175, 245, and 248. Overexpression of p53 was seen in 34.1 % and correlated with tumor node metastasis (TNM) advanced stage (p = 0.037) and mucinous histotype (p = 0.001). A high concordance between p53 expression and alteration (p < 0.005) was shown. Concomitant mutations in K-ras and p53 gene were detected in only 4 % of tumors. K-ras and p53 undergo separate pathways in colorectal tumorogenesis. Interestingly, mutations in the K-ras gene might be considered a valuable prognostic factor correlated to poor outcome. p53 gene alterations were rather low in our set, and methylation pattern of p53 is required to elucidate the molecular basis of this protein in CRC.

Keywords

K-ras and p53 Immunohistochemistry Sequencing Prognosis Colorectal cancer 

Notes

Acknowledgments

The authors thank the Ministry of Health and Scientific Research for the support of this study.

Conflicts of interest

None

References

  1. 1.
    Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59:366–78.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  3. 3.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.CrossRefPubMedGoogle Scholar
  4. 4.
    Akkiprik M, Ataizi-Celikel C, Düşünceli F, et al. Clinical significance of p53, K-ras and DCC gene alterations in the stage I-II colorectal cancers. J Gastrointest Liver Dis. 2007;1:11–7.Google Scholar
  5. 5.
    Edkins S, O’Meara S, Parker A, et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther. 2006;5:928–32.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Gatenby RA, Vincent TL. An evolutionary model of carcinogenesis. Cancer Res. 2003;63:6212–20.PubMedGoogle Scholar
  7. 7.
    Worthley DL, Whitehall VL, Spring KJ, Leggett BA. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13:3784–91.PubMedGoogle Scholar
  8. 8.
    Pietsch EC, Humbey O, Murphy ME. Polymorphisms in the p53 pathway. Oncogene. 2006;25:1602–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Schuler M, Green DR. Transcription, apoptosis and p53: catch-22. Trends Genet. 2005;21:182–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Meek DW. The p53 response to DNA damage. DNA Repair (Amst). 2004;3:1049–56.CrossRefGoogle Scholar
  11. 11.
    Samowitz WS, Curtin KM, Edwaeds S, et al. Prognostic significance of p53 mutation in colorectal cancer at the population level. Int J Cancer. 2002;99:597–602.CrossRefPubMedGoogle Scholar
  12. 12.
    Paluszkiewicz P, Berbeæ H, Pawlowska-Wakowicz B, et al. p53 protein accumulation in colorectal cancer tissue has prognostic value only in left sided colon tumors. Cancer Detect Prev. 2004;28:252–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Soussi T, Beroud C. Significance of p53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat. 2003;21:192–200.CrossRefPubMedGoogle Scholar
  14. 14.
    Tominaga T, Iwahashi M, Takifuji K, et al. Combination of p53 codon 72 polymorphism and inactive p53 mutation predicts chemosensitivity to 5-fluorouracil in colorectal cancer. Int J Cancer. 2010;126:1691–701.PubMedGoogle Scholar
  15. 15.
    Vidaurreta M, Maestro ML, Sanz-Casla MT, Rafael S, Veganzones S, de la Orden V, et al. Colorectal carcinoma prognosis can be predicted by alterations in gene p53 exons 5 and 8. Int. J. Colorectal Dis. 2008;23:581–6.CrossRefGoogle Scholar
  16. 16.
    Oki E, Zhao Y, Yoshida R, Egashira A, Ohgaki K, Morita M, et al. The difference in p53 mutations between cancers of the upper and lower gastrointestinal tract. Digestion. 2009;79:33–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Lea IA, Jackson MA, Dunnick JK. Genetic pathways to colorectal cancer. Mutat Res. 2009;670:96–8.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Bond, C. E.,Umapathy,A., Ramsnes, I. et al. (2011) P53mutation is common in microsatellite stable, BRAF mutant colorectal cancers. Int. J. Cancer. 2012;130(7):1567–76.Google Scholar
  19. 19.
    Russo A, Bazan V, Agnese V, et al. Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies. Ann Oncol. 2005;16:iv44–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Andreyev HJ, Norman AR, Cunningham D, et al. Kirsten ras mutations in patients with colorectal cancer: the “RASCAL II” study. Br J Cancer. 2001;85:692–6.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Urosevic N, Krtolica K, Skaro-Milic A, et al. Prevalence of G-to-C tranversions among K-ras oncogene mutations in human colorectal tumors in Yugoslavia. Int J Cancer. 1993;54:249–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Capella G, Cronauer-Mitra S, Pienado MA, et al. Frequency and spectrum of mutations at codons 12 and 13 of the c-K-ras gene in human tumors. Environ Health Perspect. 1991;93:125–31.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Soong R, Powell B, Elsaleh H, et al. Prognostic significance of TP53 gene mutation in 995 cases of colorectal carcinoma. Influence of tumour site, stage, adjuvant chemotherapy and type of mutation. Eur J Cancer. 2000;36:2053–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ. The prognostic significance of K-ras, p53and APC mutations in colorectal carcinoma. Gut. 2005;54(9):1283–6.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Calistri D, Rengucci C, Seymour I, Lattuneddu A, Polifemo AM, Monti F, et al. Mutation analysis of p53, K-ras, and BRAF genes in colorectal cancer progression. J Cell Physiol. 2005;204(2):484–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Jeon CH, Lee HI, Shin IH, Park JW. Genetic alterations of APC, K-ras, p53, MSI, and MAGE in Korean colorectal cancer patients. Int J Colorectal Dis. 2008;23(1):29–35.CrossRefPubMedGoogle Scholar
  27. 27.
    Pan Z-Z, Wan D-S, Chen G, Li L-R, Zhen-Hai L, Huang B-J. Co-mutation of p53, K-ras genes and accumulation of p53 protein and its correlation to clinicopathological features in rectal cancer. World J Gastroenterol. 2004;10(24):3688–90.PubMedGoogle Scholar
  28. 28.
    Worthley DL, Leggett BA. Colorectal cancer: molecular features and clinical opportunities. Clin Biochem. 2010;31:31–8.Google Scholar
  29. 29.
    Iacopetta B. TP53 Mutation in Colorectal Cancer. Hum Mutat. 2003;21:271–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, et al. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990;87(19):7555–9.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Tullo A, D’Erchia AM, Honda K, Mitry RR, Kelly MD, Habib NA, et al. Characterization of p53 mutations in colorectal liver metastases and correlation with clinical parameters. Clin Cancer Res. 1999;5(11):3523–8.PubMedGoogle Scholar
  32. 32.
    Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21(48):7435–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci U S A. 2006;103(4):976–81.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Dix BR, Robbin P, Soong R, Jenner D, House AK, Iacopetta BJ. The common molecular genetics alteration in Dukes’B and C colorectel carcinomas are not short-term prognostic indicators of survival. Int J Cancer. 1994;59:747–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Iacopetta B, Russo A, Bazan V, et al. Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study. Ann Oncol. 2006;17:842–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Munro AJ, Lain S, Lane DP. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer. 2005;92(3):434–44.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Soong R, Robbins PD, Dix BR, Grieu F, Lim B, Knowles S, et al. Concordance between p53 protein overexpression and gene mutation in a large series of common human carcinomas. Hum Pathol. 1996;27(10):1050–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Dix B, Robbins P, Carrello S, House A, Iacopetta B. Comparison of p53 gene mutation and protein overexpression in colorectal carcinomas. Br J Cancer. 1994;70(4):585–90.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Cripps KJ, Purdie CA, Carder PJ, White S, Komine K, Bird CC, et al. A study of stabilisation of p53 protein versus point mutation in colorectal carcinoma. Oncogene. 1994;9(9):2739–43.PubMedGoogle Scholar
  40. 40.
    Thomas E. Rohan1, Shu-Qiu Li2, Robert Hartwick2 and Rita A. Kandel2. (2006) p53 Alterations and protein accumulation in benign breast tissue and breast cancer risk: a cohort study. Cancer Epidemiol Biomarkers Prev. 2006;15(7):1316–23.Google Scholar
  41. 41.
    Leopoldo S, Lorena B, Cinzia A, Gabriella DC, Angela Luciana B, Renato C, et al. Two subtypes of mucinous adenocarcinoma of the colorectum: clinicopathological and genetic features. Ann Surg Oncol. 2008;15:1429–39.CrossRefPubMedGoogle Scholar
  42. 42.
    Westra JL, Schaapveld M, Hollema H, de Boer JP, Kraak MM, de Jong D, et al. Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant-treated stage III colon cancer patients. J Clin Oncol. 2005;23(24):5635–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Georgee T, Eleni K, Joanna GP, et al. p53 and EGFR expression in colorectal cancer: a reappraisal of ‘old’ tissue markers in patients with long follow-up. Anticancer Res. 2009;29:785–92.Google Scholar
  44. 44.
    Yuan-Tzu L, Shih-Ching C, Anna Fen-Yau L, et al. p53 protein accumulation as a prognostic marker in sporadic colorectal cancer. Int J Colorectal Dis. 2007;22:499–506.CrossRefGoogle Scholar
  45. 45.
    Nasif WA, Lotfy M, El-Sayed IH, et al. Implications of CEA and p53 overexpression in the poor prognosis of colorectal cancer. Med Oncol. 2007;23:237–44.CrossRefGoogle Scholar
  46. 46.
    Fabien S, Marie-Aude Le Frere B, Rodrigo Q, et al. Pretreatment p53 nuclear overexpression as a prognostic marker in superficial bladder cancer treated with Bacillus Calmette-Guérin (BCG). Eur Urol. 2004;45:475–82.CrossRefGoogle Scholar
  47. 47.
    Lun-Xiu Q, Zhao-You T, Zeng-Chen M, et al. p53 immunohistochemical scoring: an independent prognostic marker for patients after hepatocellular carcinoma resection. World J Gastroenterol. 2002;8:459–63.Google Scholar
  48. 48.
    Garg K, Leitao Jr MM, Christine AW, et al. p53 overexpression in morphologically ambiguous endometrial carcinomas correlates with adverse clinical outcomes. Mod Pathol. 2010;23:80–92.CrossRefPubMedGoogle Scholar
  49. 49.
    Kim H, Yom C, Lee J, et al. Overexpression of p53 is correlated with poor outcome in premenopausal women with breast cancer treated with tamoxifen after chemotherapy. Breast Cancer Res Treat. 2010;121:777–88.CrossRefPubMedGoogle Scholar
  50. 50.
    Sundström M, Edlund K, Lindell M, et al. KRAS analysis in colorectal carcinoma: analytical aspects of pyrosequencing and allele-specific PCR in clinical practice. BMC Cancer. 2010;10:660.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Wójcik P, Kulig J, Okor K, et al. KRAS mutation profile in colorectal carcinoma and novel mutation-internal tandem duplication in KRAS. Pol J Pathol. 2008;59:93–6.PubMedGoogle Scholar
  52. 52.
    Servomaa K, Kiuru A, Kosma VM, et al. p53 and K-ras gene mutations in carcinoma of the rectum among Finnish women. Mol Pathol. 2000;53:24–30.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Morin M, Kelly M, Barrett N, et al. Mutations of Ki-ras and p53 genes in colorectal cancer and their prognostic significance. Gut. 1994;35:1627–31.CrossRefGoogle Scholar
  54. 54.
    Sameer AS, Chwdhri NA, Abdullah S, et al. Mutation pattern of K-ras gene of colorectal cancer patients in Kashmir: a report. Indian J Cancer. 2009;46:219–25.CrossRefPubMedGoogle Scholar
  55. 55.
    Akkiprik M, Celikel CA, Düsünceli F, et al. Relationship between overexpression of ras p21 oncoprotein and K-ras codon 12 and 13 mutations in Turkish colorectal cancer patients. Turk J Gastroenterol. 2008;19:22–7.PubMedGoogle Scholar
  56. 56.
    Scheffzek K, Ahmadian M, Wittinghofer A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem Sci. 1998;23:257–62.CrossRefPubMedGoogle Scholar
  57. 57.
    Samowitz WS, Curtin K, Schaffer D, et al. Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival: a population-based study. Cancer Epidemiol Biomarkers Prev. 2000;9:1193–7.PubMedGoogle Scholar
  58. 58.
    Delattre O, Olschwang S, Law DJ, et al. Multiple genetic alterations in distal and proximal colorectal cancer. Lancet. 1989;2:353–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Oudejans JJ, Slebos RJ, Zoetmulder FA, et al. Differential activation of ras genes by point mutation in human colon cancer with metastases to either lung or liver. Int J Cancer. 1991;49:875–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Bazan V, Migliavacca M, Zanna I, et al. Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype. Ann Oncol. 2002;13:1438–46.CrossRefPubMedGoogle Scholar
  61. 61.
    Francoise P, Laurent M, Caroline C, et al. Les voies de la carcinogenése colorectale: intérê t et application pour la pathologiste. Ann Pathol. 2002;22:277–88.Google Scholar
  62. 62.
    Hanski C. Is mucinous carcinoma of the colorectum a distinct genetic entity? Br J Cancer. 1995;72:1350–6.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Ikeda S, Shimizu Y, Fujimori M, et al. Immunohistochemical and mutational analyses of beta-catenin, Ki-ras, and p53 in two subtypes of colorectal mucinous carcinoma. Clin Cancer Res. 2003;9:5660–5.PubMedGoogle Scholar
  64. 64.
    Chiang JM, Wu Chou YH, Ma SC, et al. Influence of age on adenomatous polyposis coli and p53 mutation frequency in sporadic colorectal cancer Frarity of co-occurrence of mutations in APC, K-ras, and p53 genes. Virchows Arch. 2004;445:465–71.CrossRefPubMedGoogle Scholar
  65. 65.
    Andreyev HJN, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst. 1998;90:675–84.CrossRefPubMedGoogle Scholar
  66. 66.
    Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, et al. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A. 2002;99:9433–8.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Chaar Ines
    • 1
    • 4
    • 5
  • Ounissi Donia
    • 1
    • 4
    • 5
  • Boughriba Rahma
    • 1
    • 4
    • 5
  • Azza Ben Ammar
    • 1
    • 4
    • 5
  • Amara Sameh
    • 1
    • 4
    • 5
  • Taher Khalfallah
    • 1
    • 3
    • 5
  • Ben hmida Abdelmajid
    • 3
    • 4
    • 5
  • Mzabi Sabeh
    • 1
    • 2
    • 4
    • 5
  • Bouraoui Saadia
    • 1
    • 2
    • 4
    • 5
  1. 1.Laboratory of Colorectal Cancer Research UR03ES04Science University TunisTunisTunisia
  2. 2.Department of Pathology and CytologyMongi Slim Hospital La MarsaTunisTunisia
  3. 3.Department of Epidemiology and Preventive MedicineMedicine University of TunisTunisTunisia
  4. 4.Department of General SurgeryMongi Slim Hospital La MarsaTunisTunisia
  5. 5.Science University of Tunis UTMTunisTunisia

Personalised recommendations