Advertisement

Tumor Biology

, Volume 35, Issue 7, pp 6867–6877 | Cite as

RETRACTED ARTICLE: Correlations of IFN-γ genetic polymorphisms with susceptibility to breast cancer: a meta-analysis

  • Chun-Jiang Li
  • Yue Dai
  • Yan-Jun Fu
  • Jia-Ming Tian
  • Jin-Lun Li
  • Hong-Jun Lu
  • Feng Duan
  • Qing-Wang Li
Research Article

Abstract

The meta-analysis was conducted to evaluate the correlations between common genetic polymorphisms in the IFN-γ gene and susceptibility to breast cancer. The following electronic databases were searched without language restrictions: MEDLINE (1966 ~ 2013), the Cochrane Library Database (issue 12, 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), Web of Science (1945 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analysis was performed with the use of the STATA statistical software. Odds ratios (OR) with their 95 % confidence intervals (95 % CIs) were calculated. Nine clinical case-control studies met all the inclusion criteria and were included in this meta-analysis. A total of 1,182 breast cancer patients and 1,525 healthy controls were involved in this meta-analysis. Three functional polymorphisms were assessed, including rs2069705 C>T, rs2430561 T>A, and CA repeats 2/X. Our meta-analysis results indicated that IFN-γ genetic polymorphisms might be significantly associated with an increased risk of breast cancer (allele model: OR = 1.37, 95 % CI = 1.03 ~ 1.83, P = 0.031; dominant model: OR = 1.55, 95 % CI = 1.01 ~ 2.37, P = 0.046; homozygous model: OR = 2.23, 95 % CI = 1.30 ~ 3.82, P = 0.004; respectively), especially the rs2430561 T>A polymorphism. Subgroup analysis based on ethnicity suggested that genetic polymorphisms in the IFN-γ gene were closely correlated with increased breast cancer risk among Asians (allele model: OR = 1.21, 95 % CI = 1.02 ~ 1.58, P = 0.017; dominant model: OR = 3.44, 95 % CI = 2.07 ~ 5.71, P < 0.001; recessive model: OR = 1.58, 95 % CI = 1.06 ~ 2.37, P = 0.025; homozygous model: OR = 1.83, 95 % CI = 1.19 ~ 2.80, P = 0.006; respectively), but not among Caucasians (all P > 0.05). Our meta-analysis supported the hypothesis that IFN-γ genetic polymorphisms may contribute to an increased risk of breast cancer, especially the rs2430561 T>A polymorphism among Asians.

Keywords

IFN-γ Genetic polymorphism Susceptibility Breast cancer Meta-analysis 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Heilongjiang Province (No. D201166). We would like to acknowledge the reviewers for their helpful comments on this paper.

Conflicts of interest

None

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Guo LJ, Zhang QY. Decreased serum miR-181a is a potential new tool for breast cancer screening. Int J Mol Med. 2012;30(3):680–6.PubMedGoogle Scholar
  3. 3.
    Brinton LA, Carreon JD, Gierach GL, McGlynn KA, Gridley G. Etiologic factors for male breast cancer in the U.S. Veterans Affairs medical care system database. Breast Cancer Res Treat. 2010;119(1):185–92.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Nickels S, Truong T, Hein R, Stevens K, Buck K, Behrens S, et al. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet. 2013;9(3):e1003284.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    La Vecchia C, Giordano SH, Hortobagyi GN, Chabner B. Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle. Oncologist. 2011;16(6):726–9.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Xue F, Willett WC, Rosner BA, Hankinson SE, Michels KB. Cigarette smoking and the incidence of breast cancer. Arch Intern Med. 2011;171(2):125–33.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Park SK, Kim Y, Kang D, Jung EJ, Yoo KY. Risk factors and control strategies for the rapidly rising rate of breast cancer in Korea. J Breast Cancer. 2011;14(2):79–87.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Fontein DB, de Glas NA, Duijm M, Bastiaannet E, Portielje JE, Van de Velde CJ, et al. Age and the effect of physical activity on breast cancer survival: a systematic review. Cancer Treat Rev. 2013;39(8):958–65.CrossRefPubMedGoogle Scholar
  9. 9.
    Reiner AS, John EM, Brooks JD, Lynch CF, Bernstein L, Mellemkjaer L, et al. Risk of asynchronous contralateral breast cancer in noncarriers of BRCA1 and BRCA2 mutations with a family history of breast cancer: a report from the Women’s Environmental Cancer and Radiation Epidemiology Study. J Clin Oncol. 2013;31(4):433–9.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Bouchardy C, Rapiti E, Fioretta G, Schubert H, Chappuis P, Vlastos G, et al. Impact of family history of breast cancer on tumour characteristics, treatment, risk of second cancer and survival among men with breast cancer. Swiss Med Wkly. 2013;143:w13879.PubMedGoogle Scholar
  11. 11.
    Su Y, Tang LY, Chen LJ, He JR, Su FX, Lin Y, et al. Joint effects of febrile acute infection and an interferon-gamma polymorphism on breast cancer risk. PLoS One. 2012;7(5):e37275.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Karakus N, Kara N, Ulusoy AN, Ozaslan C, Bek Y. Tumor necrosis factor alpha and beta and interferon gamma gene polymorphisms in Turkish breast cancer patients. DNA Cell Biol. 2011;30(6):371–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim K, Cho SK, Sestak A, Namjou B, Kang C, Bae SC. Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. Ann Rheum Dis. 2010;69(6):1247–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Horras CJ, Lamb CL, Mitchell KA. Regulation of hepatocyte fate by interferon-gamma. Cytokine Growth Factor Rev. 2011;22(1):35–43.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    He JR, Chen LJ, Su Y, Cen YL, Tang LY, Yu DD, et al. Joint effects of Epstein-Barr virus and polymorphisms in interleukin-10 and interferon-gamma on breast cancer risk. J Infect Dis. 2012;205(1):64–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Chou SF. Development of a manual self-assembled colloidal gold nanoparticle-immunochromatographic strip for rapid determination of human interferon-gamma. Analyst. 2013;138(9):2620–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Pluddemann A, Mukhopadhyay S, Gordon S. Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol Rev. 2011;240(1):11–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Gonullu G, Basturk B, Evrensel T, Oral B, Gozkaman A, Manavoglu O. Association of breast cancer and cytokine gene polymorphism in Turkish women. Saudi Med J. 2007;28(11):1728–33.PubMedGoogle Scholar
  19. 19.
    Naylor SL, Gray PW, Lalley PA. Mouse immune interferon (IFN-gamma) gene is on chromosome 10. Somat Cell Mol Genet. 1984;10(5):531–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Erdei E, Kang H, Meisner A, White K, Pickett G, Baca C, et al. Polymorphisms in cytokine genes and serum cytokine levels among New Mexican women with and without breast cancer. Cytokine. 2010;51(1):18–24.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Zintzaras E, Ioannidis JP. HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics. 2005;21(18):3672–3.CrossRefPubMedGoogle Scholar
  23. 23.
    Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295(6):676–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu GH, Zhang JY, Lu PX. Association of single nucleotide polymorphism of interferon-ganuna gene+874 site and breast cancer. Cancer Res Prev Treat. 2008;35(9).Google Scholar
  25. 25.
    Skerrett DL, Moore EM, Bernstein DS, Vahdat L. Cytokine genotype polymorphisms in breast carcinoma: associations of TGF-beta1 with relapse. Cancer Invest. 2005;23(3):208–14.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu JM, Bensen-Kennedy D, Miura Y, Thoburn CJ, Armstrong D, Vogelsang GB, et al. The effects of interleukin 10 and interferon gamma cytokine gene polymorphisms on survival after autologous bone marrow transplantation for patients with breast cancer. Biol Blood Marrow Transplant. 2005;11(6):455–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Saha A, Dhir A, Ranjan A, Gupta V, Bairwa N, Bamezai R. Functional IFNG polymorphism in intron 1 in association with an increased risk to promote sporadic breast cancer. Immunogenetics. 2005;57(3–4):165–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Kamali-Sarvestani E, Merat A, Talei AR. Polymorphism in the genes of alpha and beta tumor necrosis factors (TNF-alpha and TNF-beta) and gamma interferon (IFN-gamma) among Iranian women with breast cancer. Cancer Lett. 2005;223(1):113–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Zur Hausen H. The search for infectious causes of human cancers: where and why. Virology. 2009;392(1):1–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Joshi D, Quadri M, Gangane N, Joshi R. Association of Epstein Barr virus infection (EBV) with breast cancer in rural Indian women. PLoS One. 2009;4(12):e8180.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Farrell RA, Antony D, Wall GR, Clark DA, Fisniku L, Swanton J, et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology. 2009;73(1):32–8.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Wingate PJ, McAulay KA, Anthony IC, Crawford DH. Regulatory T cell activity in primary and persistent Epstein-Barr virus infection. J Med Virol. 2009;81(5):870–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Mi YY, Yu QQ, Xu B, Zhang LF, Min ZC, Hua LX, et al. Interferon gamma +874 T/A polymorphism contributes to cancer susceptibility: a meta-analysis based on 17 case-control studies. Mol Biol Rep. 2011;38(7):4461–7.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Chun-Jiang Li
    • 1
    • 2
  • Yue Dai
    • 2
  • Yan-Jun Fu
    • 3
  • Jia-Ming Tian
    • 3
  • Jin-Lun Li
    • 4
  • Hong-Jun Lu
    • 3
  • Feng Duan
    • 4
  • Qing-Wang Li
    • 1
    • 5
  1. 1.College of Environment and Chemical EngineeringYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.College of Basic MedicineJiamusi UniversityJiamusiPeople’s Republic of China
  3. 3.The First Affiliated Hospital of Jiamusi UniversityJiamusiPeople’s Republic of China
  4. 4.The Second Affiliated Hospital of Jiamusi UniversityJiamusiPeople’s Republic of China
  5. 5.College of Animal ScienceNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations