Tumor Biology

, Volume 35, Issue 7, pp 6319–6326 | Cite as

HER2 expression in primary gastric cancers and paired synchronous lymph node and liver metastases. A possible road to target HER2 with radionuclides

  • Qichun Wei
  • Jing Xu
  • Li Shen
  • Xianhua Fu
  • Bicheng Zhang
  • Xiaofeng Zhou
  • Jorgen Carlsson
Research Article


Resistance has been reported to human epidermal growth factor receptor 2 (HER2)-targeted therapy with the tyrosine kinase inhibitor lapatinib and the antibody trastuzumab in metastatic gastric cancer. An alternative or complement might be to target the extracellular domain of HER2 with therapy-effective radionuclides. The fraction of patients with HER2 expression in primary tumors and major metastatic sites, e.g., lymph nodes and liver, was analyzed to evaluate the potential for such therapy. Samples from primary tumors and lymph node and liver metastases were taken from each patient within a few hours, and to our knowledge, such sampling is unique. The number of analyzed cases was therefore limited, since patients that had received preoperative radiotherapy, chemotherapy, or HER2-targeted therapy were excluded. From a large number of considered patients, only 29 could be included for HER2 analysis. Intracellular mutations were not analyzed since they are assumed to have no or minor effect on the extracellular binding of molecules that deliver radionuclides. HER2 was positive in nearly 52 % of the primary tumors, and these expressed HER2 in corresponding lymph node and liver metastases in 93 and 100 % of the cases, respectively. Similar values for primary tumors and also good concordance with metastases have been indicated in the literature. Thus, relevant radionuclides and targeting molecules for nuclear medicine-based noninvasive, whole-body receptor analysis, dose planning, and therapy can be applied for many patients; see “Discussion” Hopefully, more patients can then be treated with curative instead of palliative intention.


Gastric cancer HER2 Immunohistochemistry Liver metastasis Lymph node metastasis Resistance 



Financial support was given from the National Natural Science Foundation of China (contracts 81071823 and 81201811), Zhejiang University Research foundation, China (contract 11-491020-110), and the Swedish Cancer Society, Sweden (contracts 11-0565 and 12-0415).

Conflicts of interests



  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–907.CrossRefPubMedGoogle Scholar
  3. 3.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Roskoski Jr R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol. 2007;19(2):124–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Mosesson Y, Yarden Y. Oncogenic growth factor receptors: implications for signal transduction therapy. Semin Cancer Biol. 2004;14(4):262–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.CrossRefPubMedGoogle Scholar
  9. 9.
    Okines AF, Cunningham D. Trastuzumab: a novel standard option for patients with HER-2-positive advanced gastric or gastro-oesophageal junction cancer. Therap Adv Gastroenterol. 2012;5(5):301–18.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    De Vita F, Giuliani F, Silvestris N, Catalano G, Ciardiello F, Orditura M. Human epidermal growth factor receptor 2 (HER2) in gastric cancer: a new therapeutic target. Cancer Treat Rev. 2010;36 Suppl 3:S11–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19:1523–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Yamaguchi H, Chang SS, Hsu JL, Hung MC. Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene. 2014;33(9):1073–81.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2014;21(1):343–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Hudis C, Swanton C, Janjigian YY, Lee R, Sutherland S, Lehman R, et al. A phase 1 study evaluating the combination of an allosteric AKT inhibitor (MK-2206) and trastuzumab in patients with HER2-positive solid tumors. Breast Cancer Res. 2013;15(6):R110.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Ocaña A, Pandiella A. Targeting HER receptors in cancer. Curr Pharm Des. 2013;19(5):808–17.CrossRefPubMedGoogle Scholar
  16. 16.
    Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim HP, Han SW, Song SH, Jeong EG, Lee MY, Hwang D, et al. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer. Oncogene. 2013. doi: 10.1038/onc.2013.285.Google Scholar
  18. 18.
    Sato Y, Yashiro M, Takakura N. Heregulin induces resistance to lapatinib-mediated growth inhibition of HER2-amplified cancer cells. Cancer Sci. 2013;104(12):1618–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Pazo Cid RA, Antón A. Advanced HER2-positive gastric cancer: current and future targeted therapies. Crit Rev Oncol Hematol. 2013;85(3):350–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Shi M, Yang Z, Hu M, Liu D, Hu Y, Qian L, et al. Catecholamine-Induced β2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression. J Immunol. 2013;190(11):5600–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Goldenberg DM, Sharkey RM. Using antibodies to target cancer therapeutics. Expert Opin Biol Ther. 2012;12(9):1173–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Thomadsen B, Erwin W, Mourtada F. The physics and radiobiology of targeted radionuclide therapy. In: Speer TW, editor. Targeted radionuclide therapy. Lippincott Williams & Wilkins, Philadelphia; 2011, Chapter 6, pp. 71–87Google Scholar
  23. 23.
    Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S, Frejd FY. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 2010;584(12):2670–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Carlsson J, Stigbrand T, Adams GP. Introduction to radionuclide therapy. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects, vol. 1. Heidelberg: Springer; 2008. p. 1–11.CrossRefGoogle Scholar
  25. 25.
    Pagni F, Zannella S, Ronchi S, Garanzini C, Leone BE. HER2 status of gastric carcinoma and corresponding lymph node metastasis. Pathol Oncol Res. 2013;19:103–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Bozzetti C, Negri FV, Lagrasta CA, Crafa P, Bassano C, Tamagnini I, et al. Comparison of HER2 status in primary and paired metastatic sites of gastric carcinoma. Br J Cancer. 2011;104(9):1372–6.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Kim MA, Lee HJ, Yang HK, Bang YJ, Kim WH. Heterogeneous amplification of ERBB2 in primary lesions is responsible for the discordant ERBB2 status of primary and metastatic lesions in gastric carcinoma. Histopathology. 2011;59:822–31.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Tsapralis D, Panayiotides I, Peros G, Liakakos T, Karamitopoulou E. Human epidermal growth factor receptor-2 gene amplification in gastric cancer using tissue microarray technology. World J Gastroenterol. 2012;18:150–5.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Marx AH, Tharun L, Muth J, Dancau AM, Simon R, Yekebas E, et al. HER-2 amplification is highly homogenous in gastric cancer. Hum Pathol. 2009;40(6):769–77.CrossRefPubMedGoogle Scholar
  30. 30.
    Sobin LH, Wittekind C, editors. TNM classification of malignant tumours. 6th ed. New York: Wiley-Liss; 2002. p. 239.Google Scholar
  31. 31.
    Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMedGoogle Scholar
  32. 32.
    Hamilton SR, Aaltonen LA. World Health Organization and International Agency for Research on Cancer. Pathology and genetics of tumours of the digestive system. Lyon: IARC; 2000. p. 313.Google Scholar
  33. 33.
    Wei Q, Shui Y, Zheng S, Wester K, Nordgren H, Nygren P, et al. EGFR, HER2 and HER3 expression in primary colorectal carcinomas and corresponding metastases: implications for targeted radionuclide therapy. Oncol Rep. 2011;25(1):3–11.PubMedGoogle Scholar
  34. 34.
    Hofmann M, Stoss O, Shi D, Buttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52(7):797–805.CrossRefPubMedGoogle Scholar
  35. 35.
    Sörensen J, Sandberg D, Sandström M, Wennborg A, Feldwisch J, Tolmachev V, et al. First in human whole body HER2-receptor mapping using Affibody 111In-ABY-025 molecular imaging. J Nucl Med. (In press), 2014.Google Scholar
  36. 36.
    Altai M, Orlova A, Tolmachev V. Radiolabeled Probes Targeting Tyrosine-Kinase Receptors For Personalized Medicine. Curr Pharm Des. 2013 (In press).Google Scholar
  37. 37.
    Heskamp S, van Laarhoven HW, Oyen WJ, van der Graaf WT, Boerman OC. Tumor-receptor imaging in breast cancer: a tool for patient selection and response monitoring. Curr Mol Med. 2013;13(10):1506–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Fox JJ, Schöder H, Larson SM. Molecular imaging of prostate cancer. Curr Opin Urol. 2012;22(4):320–7.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2006;24(15):2276–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Natali PG, Nicotra MR, Bigotti A, Venturo I, Slamon DJ, Fendly BM, et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer. 1990;45(3):457–61.CrossRefPubMedGoogle Scholar
  41. 41.
    Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5(7):953–62.PubMedGoogle Scholar
  42. 42.
    Carlsson J. Potential for clinical radionuclide based imaging and therapy of common cancers expressing EGFR-family receptors. Tumour Biol. 2012;33(3):653–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Janjigian YY, Werner D, Pauligk C, Steinmetz K, Kelsen DP, Jager E, et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol. 2012;23(10):2656–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Sheng WQ, Huang D, Ying JM, Lu N, Wu HM, Liu YH, et al. HER2 status in gastric cancers: a retrospective analysis from four Chinese representative clinical centers and assessment of its prognostic significance. Ann Oncol. 2013;24(9):2360–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen C, Yang JM, Hu TT, Xu TJ, Yan G, Hu SL, et al. Prognostic role of human epidermal growth factor receptor in gastric cancer: a systematic review and meta-analysis. Arch Med Res. 2013;44(5):380–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Jørgensen JT, Hersom M. HER2 as a prognostic marker in gastric cancer—a systematic analysis of data from the literature. J Cancer Educ. 2012;3:137–44.CrossRefGoogle Scholar
  47. 47.
    Mizutani T, Onda M, Tokunaga A, Yamanaka N, Sugisaki Y. Relationship of C-erbB-2 protein expression and gene amplification to invasion and metastasis in human gastric cancer. Cancer. 1993;72(7):2083–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Dang HZ, Yu Y, Jiao SC. Prognosis of HER2 over-expressing gastric cancer patients with liver metastasis. World J Gastroenterol. 2012;18(19):2402–7.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumour Biol. 2012;33(3):573–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Govindan SV, Goldenberg DM. Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther. 2012;12(7):873–90.CrossRefPubMedGoogle Scholar
  51. 51.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.CrossRefPubMedGoogle Scholar
  52. 52.
    Witzig TE, Fishkin P, Gordon LI, Gregory SA, Jacobs S, Macklis R, et al. Treatment recommendations for radioimmunotherapy in follicular lymphoma: a consensus conference report. Leuk Lymphoma. 2011;52(7):1188–99.CrossRefPubMedGoogle Scholar
  53. 53.
    Press OW. Radiolabeled antibody therapy of B-cell lymphomas. Semin Oncol. 1999;26(5 Suppl 14):58–65.PubMedGoogle Scholar
  54. 54.
    Kam BL, Teunissen JJ, Krenning EP, de Herder WW, Khan S, van Vliet EI, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S103–12.CrossRefPubMedGoogle Scholar
  55. 55.
    Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37(2):212–25.CrossRefPubMedGoogle Scholar
  56. 56.
    Williams SP. Tissue distribution studies of protein therapeutics using molecular probes: molecular imaging. AAPS J. 2012;14(3):389–99.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Matthews PM, Rabiner EA, Passchier J, Gunn RN. Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol. 2012;73(2):175–86.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Ståhl S, Friedman M, Carlsson J, Tolmachev V, Frejd F. Affibody molecules for targeted radionuclide therapy. In: Speer TW, editor. Targeted radionuclide therapy. Lippincott Williams & Wilkins; 2011. Chapter 4, pp. 49-58.Google Scholar
  59. 59.
    Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EK. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev. 2011;63(7):547–54.CrossRefPubMedGoogle Scholar
  60. 60.
    Fondell A, Edwards K, Ickenstein LM, Sjöberg S, Carlsson J, Gedda L. Nuclisome: a novel concept for radionuclide therapy using targeting liposomes. Eur J Nucl Med Mol Imaging. 2010;37(1):114–23.CrossRefPubMedGoogle Scholar
  61. 61.
    Stigbrand T, Carlsson J, Adams GP. Developmental trends in targeted radionuclide therapy—biological aspects. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy, biological aspects, vol. 21. Heidelberg: Springer; 2008. p. 387–97.CrossRefGoogle Scholar
  62. 62.
    Persson M, Gedda L, Lundqvist H, Tolmachev V, Nordgren H, Malmstrom PU, et al. [177Lu] pertuzumab: experimental therapy of HER-2-expressing xenografts. Cancer Res. 2007;67(1):326–31.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Qichun Wei
    • 1
  • Jing Xu
    • 1
  • Li Shen
    • 1
  • Xianhua Fu
    • 1
  • Bicheng Zhang
    • 1
  • Xiaofeng Zhou
    • 1
  • Jorgen Carlsson
    • 2
  1. 1.Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention)Zhejiang University School of MedicineHangzhouPeople’s Republic of China
  2. 2.Department of Radiology Oncology and Radiation Science, Rudbeck Laboratory, Unit of Biomedical Radiation SciencesUppsala UniversityUppsalaSweden

Personalised recommendations