Tumor Biology

, Volume 35, Issue 7, pp 6467–6474 | Cite as

Rapamycin combined with celecoxib enhanced antitumor effects of mono treatment on chronic myelogenous leukemia cells through downregulating mTOR pathway

  • Jie Li
  • Liying Xue
  • Hongling Hao
  • Ruoyu Li
  • Jianmin Luo
Research Article


Chronic myelogenous leukemia is a neoplasm of myeloid progenitor cells. We recently found that rapamycin could induce G0/G1 phase arrest and apoptosis and inhibit proliferation of K562 cells through inhibiting mammalian target of rapamycin (mTOR) pathway. However, whether rapamycin has synergistic effects with other drugs in chronic myelogenous leukemia (CML) therapies remain unclear. Therefore, we examined the effect of rapamycin combined with celecoxib on K562 cells in vitro. The survival rates showed a significant decrease in rapamycin + celecoxib treatment group. The combination treatment also increased the G0/G1 phase cells as compared to rapamycin or celecoxib treatment alone (P < 0.05), accompanied with the decreased population of S phase cells. Meanwhile, the rate of apoptosis was 15.87 ± 2.21 % in rapamycin + celecoxib treatment group, significantly higher than that in mono treatment group (P < 0.05). Western blot and reverse transcription PCR (RT-PCR) analysis showed that the expressions of mTOR, 4E-BP1, and p70S6K were all significantly decreased in K562 cells after rapamycin + celecoxib treatment (P < 0.05). In conclusion, rapamycin combined with celecoxib could induce cell cycle arrest and apoptosis and decrease the expressions of mTOR, 4E-BP1, and p70S6K. It suggested that the combination could enhance the antitumor effects of mono treatment on CML cells through downregulating mTOR pathway.


Chronic myelogenous leukemia mTOR Rapamycin Celecoxib 


Conflicts of interest



  1. 1.
    Rowley JD. Ph1-positive leukaemia, including chronic myelogenous leukaemia. Clin Haematol. 1980;9(1):55–86.PubMedGoogle Scholar
  2. 2.
    Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36(1):93–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Mancini M, Corradi V, Petta S, Martinelli G, Barbieri E, Santucci MA. mTOR inhibitor RAD001 (everolimus) enhances the effects of imatinib in chronic myeloid leukemia by raising the nuclear expression of c-ABL protein. Leuk Res. 2010;34(5):641–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Melo JV, Deininger MW. Biology of chronic myelogenous leukemia—signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004;18(3):545–68.CrossRefPubMedGoogle Scholar
  6. 6.
    Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD, et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci U S A. 2004;101(9):3130–5.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Parmar S, Smith J, Sassano A, Uddin S, Katsoulidis E, Majchrzak B, et al. Differential regulation of the p70 S6 kinase pathway by interferon alpha (IFNalpha) and imatinib mesylate (STI571) in chronic myelogenous leukemia cells. Blood. 2005;106(7):2436–43.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Li J, Xue L, Hao H, Han Y, Yang J, Luo J. Rapamycin provides a therapeutic option through inhibition of mTOR signaling in chronic myelogenous leukemia. Oncol Rep. 2012;27(2):461–6.PubMedGoogle Scholar
  9. 9.
    Hirase C, Maeda Y, Takai S, Kanamaru A. Hypersensitivity of Ph-positive lymphoid cell lines to rapamycin: possible clinical application of mTOR inhibitor. Leuk Res. 2009;33(3):450–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Batista A, Barata JT, Raderschall E, Sallan SE, Carlesson N, Nadler LM, et al. Targeting of active mTOR inhibits primary leukemia T cells and synergizes with cytotoxic drugs and signaling inhibitors. Exp Hematol. 2011;39(4):457–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M, et al. Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res. 2006;66(4):2305–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Wulff BC, Thomas-Ahner JM, Schick JS, Oberyszyn TM. Celecoxib reduces the effects of acute and chronic UVB exposure in mice treated with therapeutically relevant immunosuppressive drugs. Int J Cancer. 2010;126(1):11–8.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Evans JF, Kargman SL. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des. 2004;10(6):627–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Li J, Hao H, Xue L, Wang C, Wang S, Wang R. Expression and significance of COX-2, bcl-2, caspase-3 in diffuse large B-cell lymphoma. J Leuk Lymphoma. 2009;18(4):223–5.Google Scholar
  15. 15.
    Li J, Xue L, Wang C, Wang R, Yang J, Hao H. Effects of celecoxib on proliferation, apoptosis and VEGF expression in NB4 cells. Cancer Res Prev Treat. 2013;40(2):147–50.Google Scholar
  16. 16.
    Subhashini J, Mahipal SV, Reddanna P. Anti-proliferative and apoptotic effects of celecoxib on human chronic myeloid leukemia in vitro. Cancer Lett. 2005;224(1):31–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Wun T, McKnight H, Tuscano JM. Increased cyclooxygenase-2 (COX-2): a potential role in the pathogenesis of lymphoma. Leuk Res. 2004;28(2):179–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Sobolewski C, Cerella C, Dicato M, Diederich M. Cox-2 inhibitors induce early c-Myc downregulation and lead to expression of differentiation markers in leukemia cells. Cell Cycle. 2011;10(17):2978–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang GS, Liu DS, Dai CW, Li RJ. Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib. Am J Hematol. 2006;81(4):242–55.CrossRefPubMedGoogle Scholar
  20. 20.
    Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P, et al. Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem. 2002;277(31):27613–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Kulp SK, Yang YT, Hung CC, Chen KF, Lai JP, Tseng PH, et al. 3-Phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res. 2004;64(4):1444–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhu J, Song X, Lin HP, Young DC, Yan S, Marquez VE, et al. Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst. 2002;94(23):1745–57.CrossRefPubMedGoogle Scholar
  23. 23.
    Tseng PH, Wang YC, Weng SC, Weng JR, Chen CS, Brueggemeier RW, et al. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol. 2006;70(5):1534–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Fan X, Takahashi-Yanaga F, Morimoto S, Zhan DY, Igawa K, Tomooka K, et al. Celecoxib and 2,5-dimethyl-celecoxib prevent cardiac remodeling inhibiting Akt-mediated signal transduction in an inherited dilated cardiomyopathy mouse model. J Pharmacol Exp Ther. 2011;338(1):2–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang YJ, Bao YJ, Dai Q, Yang WY, Cheng P, Zhu LM, et al. mTOR signaling is involved in indomethacin and nimesulide suppression of colorectal cancer cell growth via a COX-2 independent pathway. Ann Surg Oncol. 2011;18(2):580–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Vo BT, Morton Jr D, Komaragiri S, Millena AC, Leath C, Khan SA. TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway. Endocrinology. 2013;154(5):1768–79.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    de Oliveira AC, Candelario-Jalil E, Langbein J, Wendeburg L, Bhatia HS, Schlachetzki JC, et al. Pharmacological inhibition of Akt and downstream pathways modulates the expression of COX-2 and mPGES-1 in activated microglia. J Neuroinflammation. 2012;9:2.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    de Oliveira AC, Candelario-Jalil E, Bhatia HS, Lieb K, Hüll M, Fiebich BL. Regulation of prostaglandin E2 synthase expression in activated primary rat microglia: evidence for uncoupled regulation of mPGES-1 and COX-2. Glia. 2008;56(8):844–55.CrossRefPubMedGoogle Scholar
  29. 29.
    Li C, Lee PS, Sun Y, Gu X, Zhang E, Guo Y, et al. Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. J Exp Med. 2014;211(1):15–28.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Sillaber C, Mayerhofer M, Böhm A, Vales A, Gruze A, Aichberger KJ, et al. Evaluation of antileukaemic effects of rapamycin in patients with imatinib-resistant chronic myeloid leukaemia. Eur J Clin Invest. 2008;38(1):43–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang ZG, Fukazawa T, Nishikawa T, Watanabe N, Sakurama K, Motoki T, et al. RAD001 offers a therapeutic intervention through inhibition of mTOR as a potential strategy for esophageal cancer. Oncol Rep. 2010;23(4):1167–72.CrossRefPubMedGoogle Scholar
  32. 32.
    Mishra R, Miyamoto M, Yoshioka T, Ishikawa K, Matsumura Y, Shoji Y, et al. Adenovirus-mediated eukaryotic initiation factor 4E binding protein-1 in combination with rapamycin inhibits tumor growth of pancreatic ductal adenocarcinoma in vivo. Int J Oncol. 2009;34(5):1231–40.PubMedGoogle Scholar
  33. 33.
    Johnston PB, Inwards DJ, Colgan JP, Laplant BR, Kabat BF, Habermann TM, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol. 2010;85(5):320–4.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Nagai T, Ohmine K, Fujiwara S, Uesawa M, Sakurai C, Ozawa K. Combination of tipifarnib and rapamycin synergistically inhibits the growth of leukemia cells and overcomes resistance to tipifarnib via alteration of cellular signaling pathways. Leuk Res. 2010;34(8):1057–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Abraham RT, Gibbons JJ. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res. 2007;13(11):3109–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Margolin K, Longmate J, Baratta T, Synold T, Christensen S, Weber J, et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer. 2005;104(5):1045–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Bundscherer A, Vogt T, Köhl G, Landthaler M, Hafner C. Antiproliferative effects of rapamycin and celecoxib in angiosarcoma cell lines. Anticancer Res. 2010;30(10):4017–23.PubMedGoogle Scholar
  38. 38.
    Ross JA, Blair CK, Cerhan JR, Soler JT, Hirsch BA, Roesler MA, et al. Nonsteroidal anti-inflammatory drug and acetaminophen use and risk of adult myeloid leukemia. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1741–50.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Cervello M, Bachvarov D, Cusimano A, Sardina F, Azzolina A, Lampiasi N, et al. COX-2-dependent and COX-2-independent mode of action of celecoxib in human liver cancer cells. OMICS. 2011;15(6):383–92.CrossRefPubMedGoogle Scholar
  40. 40.
    Schönthal AH. Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Br J Cancer. 2007;97(11):1465–8.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Wang YX, Gao JX, Wang XY, Zhang L, Liu CM. Antiproliferative effects of selective cyclooxygenase-2 inhibitor modulated by nimotuzumab in estrogen-dependent breast cancer cells. Tumour Biol. 2012;33(4):957–66.CrossRefPubMedGoogle Scholar
  42. 42.
    Fischer SM, Lo HH, Gordon GB, Seibert K, Kelloff G, Lubet RA, et al. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol Carcinog. 1999;25(4):231–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Yao R, Rioux N, Castonguay A, You M. Inhibition of COX-2 and induction of apoptosis: two determinants of nonsteroidal antiinflammatory drugs’ chemopreventive efficacies in mouse lung tumorigenesis. Exp Lung Res. 2000;26(8):731–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol. 2000;164(3 Pt 1):820–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Bundscherer A, Hafner C, Maisch T, Becker B, Landthaler M, Vogt T. Antiproliferative and proapoptotic effects of rapamycin and celecoxib in malignant melanoma cell lines. Oncol Rep. 2008;19(2):547–53.PubMedGoogle Scholar
  46. 46.
    Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology. 2003;38(3):756–68.CrossRefPubMedGoogle Scholar
  47. 47.
    Ladu S, Calvisi DF, Conner EA, Farina M, Factor VM, Thorgeirsson SS. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology. 2008;135(4):1322–32.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Jie Li
    • 1
  • Liying Xue
    • 2
  • Hongling Hao
    • 1
  • Ruoyu Li
    • 3
  • Jianmin Luo
    • 4
  1. 1.Department of HematologyHebei General HospitalShijiazhuangChina
  2. 2.Department of PathologyHebei Medical UniversityShijiazhuangChina
  3. 3.Graduate FacultyHebei Medical UniversityShijiazhuangChina
  4. 4.Department of Hematology, The Second HospitalHebei Medical UniversityShijiazhuangChina

Personalised recommendations