Advertisement

Tumor Biology

, Volume 35, Issue 6, pp 5911–5920 | Cite as

Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation

  • Fumiharu Ohka
  • Maki Ito
  • Melissa Ranjit
  • Takeshi Senga
  • Ayako Motomura
  • Kazuya Motomura
  • Kaori Saito
  • Keiko Kato
  • Yukinari Kato
  • Toshihiko Wakabayashi
  • Tomoyoshi Soga
  • Atsushi Natsume
Research Article

Abstract

Isocitrate dehydrogenase 1 (IDH1), which localizes to the cytosol and peroxisomes, catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) and in parallel converts NADP+ to NADPH. IDH1 mutations are frequently detected in grades 2–4 gliomas and in acute myeloid leukemias (AML). Mutations of IDH1 have been identified at codon 132, with arginine being replaced with histidine in most cases. Mutant IDH1 gains novel enzyme activity converting α-KG to d-2-hydroxyglutarate (2-HG) which acts as a competitive inhibitor of α-KG. As a result, the activity of α-KG-dependent enzyme is reduced. Based on these findings, 2-HG has been proposed to be an oncometabolite. In this study, we established HEK293 and U87 cells that stably expressed IDH1-WT and IDH1-R132H and investigated the effect of glutaminase inhibition on cell proliferation with 6-diazo-5-oxo-l-norleucine (DON). We found that cell proliferation was suppressed in IDH1-R132H cells. The addition of α-KG restored cell proliferation. The metabolic features of 33 gliomas with wild type IDH1 (IDH1-WT) and with IDH1-R132H mutation were examined by global metabolome analysis using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We showed that the 2-HG levels were highly elevated in gliomas with IDH1-R132H mutation. Intriguingly, in gliomas with IDH1-R132H, glutamine and glutamate levels were significantly reduced which implies replenishment of α-KG by glutaminolysis. Based on these results, we concluded that glutaminolysis is activated in gliomas with IDH1-R132H mutation and that development of novel therapeutic approaches targeting activated glutaminolysis is warranted.

Keywords

Glioma IDH1 mutation Metabolome Glutaminolysis 

Notes

Acknowledgements

This work was supported in part by the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary material

13277_2014_1784_MOESM1_ESM.pptx (2.4 mb)
Supplemental Figure 1 Microscopic imaging of cells expressing IDH1-WT or IDH1-R132H We generate HEK293 and U87 cells, expressing IDH1-WT or IDH1-R132H fused with GFP protein. In both cell lines, exogenous IDH1-WT and IDH1-R132H with GFP are located in the cytoplasm. (PPTX 2432 kb)
13277_2014_1784_MOESM2_ESM.pptx (41.3 mb)
Supplemental Figure 2 Expression of endogenous IDH2 in cells expressing IDH1-WT or IDH1-R132H We detected expression of endogenous IDH2 expressing IDH1-WT or IDH1-R132H cells, compared with those expressions of β-actin. (PPTX 42260 kb)
13277_2014_1784_MOESM3_ESM.pptx (80 kb)
Supplemental Figure 3 Cell growth rate of cells expressing IDH1-WT or IDH1-R132H in normal condition MTT assay revealed that cell growth rate of control cells, IDH1-WT cells and IDH1-R132H cells are almost equal in HEK293 and U87. (PPTX 80 kb)
13277_2014_1784_MOESM4_ESM.pptx (120 kb)
Supplemental Figure 4 Restoration of cell viability by adding α-KG in glutamine deprivation condition In glutamine free medium, we cultured cells for 72 h with or without addition of 1 mM α-KG. Addition of α-KG, in glutamine deprivation condition, significantly helped to recover the cell viability of IDH1-R132H cells compared to that of IDH1-WT cells in U87 cell lines. (*: p < 0.05) (PPTX 119 kb)
13277_2014_1784_MOESM5_ESM.pptx (55 kb)
Supplemental Figure 5 Analysis of α-KG level in U87 cells expressing IDH1-WT or IDH1-R132H Using CE-TOFMS, we analyzed α-KG level in U87 cells expressing IDH1-WT or IDH1-R132H. α-KG level in IDH1-R132H cells are significantly decreased, compared with those of IDH1-WT cells. (*: p < 0.05) (PPTX 55 kb)

References

  1. 1.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12. doi: 10.1126/science.1164382.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116(6):597–602. doi: 10.1007/s00401-008-0455-2.CrossRefPubMedGoogle Scholar
  3. 3.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174(4):1149–53. doi: 10.2353/ajpath.2009.080958.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73. doi: 10.1056/NEJMoa0808710.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. doi: 10.1038/nature08617.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69(11):4918–25. doi: 10.1158/0008-5472.CAN-08-4806.CrossRefPubMedGoogle Scholar
  7. 7.
    Fults D, Brockmeyer D, Tullous MW, Pedone CA, Cawthon RM. p53 mutation and loss of heterozygosity on chromosomes 17 and 10 during human astrocytoma progression. Cancer Res. 1992;52(3):674–9.PubMedGoogle Scholar
  8. 8.
    Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118(4):469–74. doi: 10.1007/s00401-009-0561-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Kato Y, Jin G, Kuan CT, McLendon RE, Yan H, Bigner DD. A monoclonal antibody IMab-1 specifically recognizes IDH1R132H, the most common glioma-derived mutation. Biochem Biophys Res Commun. 2009;390(3):547–51. doi: 10.1016/j.bbrc.2009.10.001.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Bio Chem. 2006;281(30):21362–8. doi: 10.1074/jbc.M600504200.CrossRefGoogle Scholar
  11. 11.
    Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Bio Chem. 2006;281(24):16768–76. doi: 10.1074/jbc.M601876200.CrossRefGoogle Scholar
  12. 12.
    Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann HP, Tomita M. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem. 2009;81(15):6165–74. doi: 10.1021/ac900675k.CrossRefPubMedGoogle Scholar
  13. 13.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. doi: 10.1016/j.ccr.2009.12.020.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2011;17(5):510–22. doi: 10.1016/j.ccr.2010.03.017.CrossRefGoogle Scholar
  15. 15.
    Ohka F, Natsume A, Motomura K, Kishida Y, Kondo Y, Abe T, et al. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma. PLoS One. 2011;6(8):e23332. doi: 10.1371/journal.pone.0023332.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Songtao Q, Lei Y, Si G, Yanqing D, Huixia H, Xuelin Z, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012. doi: 10.1111/j.1349-7006.2011.02134.x.PubMedGoogle Scholar
  17. 17.
    Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70(22):8981–7. doi: 10.1158/0008-5472.CAN-10-1666.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66(18):8927–30. doi: 10.1158/0008-5472.CAN-06-1501.CrossRefPubMedGoogle Scholar
  19. 19.
    Lopez-Lazaro M. The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem. 2008;8(3):305–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–3. doi: 10.1038/nature06734.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011;480(7375):118–22. doi: 10.1038/nature10598.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 2010;12(11):1102–12. doi: 10.1093/neuonc/noq080.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A. 2010;107(5):1894–9. doi: 10.1073/pnas.0914845107.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A. 2011;108(8):3270–5. doi: 10.1073/pnas.1019393108.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324(5924):261–5. doi: 10.1126/science.1170944.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD, Chan JA, et al. Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro-oncology. 2013. doi: 10.1093/neuonc/not243.Google Scholar
  27. 27.
    Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483(7390):484–8. doi: 10.1038/nature10898.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67. doi: 10.1016/j.ccr.2010.11.015.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145(3):423–34. doi: 10.1016/j.cell.2011.03.022.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8. doi: 10.1038/nature10860.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83. doi: 10.1038/nature10866.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Chatham JC, Blackband SJ. Nuclear magnetic resonance spectroscopy and imaging in animal research. ILAR J. 2001;42(3):189–208.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Fumiharu Ohka
    • 1
  • Maki Ito
    • 1
  • Melissa Ranjit
    • 1
  • Takeshi Senga
    • 2
  • Ayako Motomura
    • 1
  • Kazuya Motomura
    • 1
  • Kaori Saito
    • 4
  • Keiko Kato
    • 4
  • Yukinari Kato
    • 3
  • Toshihiko Wakabayashi
    • 1
  • Tomoyoshi Soga
    • 4
  • Atsushi Natsume
    • 1
  1. 1.Department of NeurosurgeryNagoya University School of MedicineNagoyaJapan
  2. 2.Division of Cancer BiologyNagoya University School of MedicineNagoyaJapan
  3. 3.Department of Regional InnovationTohoku University Graduate School of MedicineAoba-kuJapan
  4. 4.Institute for Advanced BioscienceKeio UniversityYamagataJapan

Personalised recommendations