Advertisement

Tumor Biology

, Volume 35, Issue 6, pp 5717–5722 | Cite as

Research on tumorigenicity of cinnamaldehyde in melanoma cell lines and its mechanism

  • Ling Zhou
  • Yuangang Lu
  • Guihong Yang
  • Jinjin Wu
Research Article

Abstract

Melanoma is a highly malignant tumor originating from melanocytes. This disease is characterized by inconspicuous onset, high malignancy, and poor prognosis. The aim of this study is to explore the effect of cinnamaldehyde on melanoma tumorigenicity and its mechanism. Melanoma cells were subcutaneously injected into a nude mouse to establish the tumour model. A comparison was made for the difference in formation and growth of melanoma cell tumor between normal saline and cinnamaldehyde. A comparison was also made for the number of new vessels between the normal saline group (the control group) and the cinnamaldehyde group (the experimental group) through immumohistochemical staining. The western blot was used to detect the difference in expression levels of vascularization related proteins. The results indicated that the volume of tumors formed and the number of new vessels in melanoma cells of the cinnamaldehyde group decreased significantly compared with those in the cells of the normal saline group. A further study indicated that the expression of hypoxia-inducible factor-a (HIF-α) and vascular endothelial growth factor (VEGF) in the melanoma of the cinnamaldehyde group decreased significantly. In conclusion, cinnamaldehyde plays a certain role in inhibiting the occurrence and progression of melanoma and its action mechanism may be manifested by inhibiting expression of VEGF and HIF-α, thus blood vessel simulation and formation of new blood vessels of melanoma cells, and growth of tumors accordingly.

Keyword

Melanoma Cinnamaldehyde Animal model Protein expression 

Notes

Conflicts of interest

None

References

  1. 1.
    Wu BJ, Li WP, Qian C, Ding W, Zhou ZW, Jiang H. Increased serum level of thymidine kinase 1 correlates with metastatic site in patients with malignant melanoma. Tumor Biol. 2013;34(2):643–8.CrossRefGoogle Scholar
  2. 2.
    Stevenson AD, Mickan S, Mallett S, Ayya M. Systematic review of diagnostic accuracy of reflectance confocal microscopy for melanoma diagnosis in patients with clinically equivocal skin lesions. Dermatol Pract Concept. 2013;3(4):19–27.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kawczyk-Krupka A, Bugaj AM, Latos W, Zarebma K, Sieron A. Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagnosis Photodyn Ther. 2013;10(4):503–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sharma R, Jain S. Nodular Vulvar Melanoma: A Rare Tumor with Worse Prognosis. J Obstet Gynaecol India. 2012;62(1):87–8.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Covarelli P, Burini G, Barberini F, Caracappa D, Boselli C, Noya G, et al. The integrated role of ultrasonography in the diagnosis of soft tissue metastases from melanoma: preliminary report of a single-center experience and literature review. In Vivo. 2013;27(6):827–33.PubMedGoogle Scholar
  6. 6.
    Freeman SR, Gibbs BB, Brodland DG, Zitelli JA. Prognostic value of sentinel lymph node biopsy compared with that of breslow thickness: implications for informed consent in patients with invasive melanoma. Dermatol Surg. 2013;39(12):1800–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Wondrak GT, Villeneuve NF, Lamore SD, Bause AS, Jiang T, Zhang DD. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules. 2010;15(5):3338–55.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Song F, Li H, Sun J, Wang S. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J Ethnopharmacol. 2013;150(1):125–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Cabello CM, Bair WB, Lamore SD, Ley S, Bause AS, Azimian S, et al. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med. 2009;46(2):220–31.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Sato A, Yoshikawa N, Kubo E, Kakuda M, Nishiuchi A, Kimoto Y, et al. Inhibitory effect of cordycepin on experimental hepatic metastasis of b16-f0 mouse melanoma cells. In Vivo. 2013;27(6):729–832.PubMedGoogle Scholar
  11. 11.
    O’Reilly KE, Miera EV, Segura MF, Friedman E, Poliseno L, Han SW, et al. Hedgehog pathway blockade inhibits melanoma cell growth in vitro and in vivo. Pharmaceuticals (Basel). 2013;6(11):1429–50.CrossRefGoogle Scholar
  12. 12.
    Gunaldi M, Paydas S, Afsar CU, Doran F. Coexistence of tuberous sclerosis complex and malignant melanoma. Singapore Med J. 2013;54(11):233–5.CrossRefGoogle Scholar
  13. 13.
    Wolf SE, Meenken C, Moll AC, Haanen JB, van der Heijden MS. Severe pan-uveitis in a patient treated with vemurafenib for metastatic melanoma. BMC Cancer. 2013;13(1):561–5.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Robles FE, Wilson JW, Warren WS. Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis. J Biomed Opt. 2013;18(12):502–6.CrossRefGoogle Scholar
  15. 15.
    Gaustad JV, Pozdniakova V, Hompland T, Simonsen TG, Rofstad EK. Magnetic resonance imaging identifies early effects of sunitinib treatment in human melanoma xenografts. J Exp Clin Cancer Res. 2013;32(1):93–6.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Caraco C, Mozzillo N, Marone U, Simeone E, Benedetto L, Di Monta G, et al. Long-lasting response to electrochemotherapy in melanoma patients with cutaneous metastasis. BMC Cancer. 2013;13(1):564–8.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Feletti A, Magrini S, Manara R, Orvieto E, Pavesi G. Intraventricular melanoma metastases. Neurol India. 2013;61(5):547–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Curry JL, Davies MA, Calderone TL, Nathanson K, Prieto VG, Gershenwald JE. Tissue resources for clinical use and marker studies in melanoma. Methods Mol Biol. 2013;1102:679–95.CrossRefGoogle Scholar
  19. 19.
    Sjoestroem C, Khosravi S, Zhang G, Martinka M, Li G. C-terminal tensin-like protein is a novel prognostic marker for primary melanoma patients. PLoS One. 2013;8(11):492–6.CrossRefGoogle Scholar
  20. 20.
    Mo H, Ouyang D, Xu L, Gao Q, He X. Human endogenous retroviral syncytin exerts inhibitory effect on invasive phenotype of B16F10 melanoma cells. Chin J Cancer Res. 2013;25(5):556–64.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Pinto A, Merino M, Zamora P, Redondo A, Castelo B, Espinosa E. Targeting the endothelin axis in prostate carcinoma. Tumor Biol. 2012;33(2):421–6.CrossRefGoogle Scholar
  22. 22.
    Wagner BP, Epperla N, Medina-Flores R. Diagnostic dilemma: late presentation of amelanotic BRAF-negative metastatic malignant melanoma resembling clear cell sarcoma – a case report. Diagn Pathol. 2013;8(1):192–6.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Bergamo P, Cocca E, Palumbo R, Gogliettino M, Rossi M, Palmieri G. RedOx Status, Proteasome and APEH: Insights into Anticancer Mechanisms of t10, c12-Conjugated Linoleic Acid Isomer on A375 Melanoma Cells. PLoS One. 2013;8(11):900–6.CrossRefGoogle Scholar
  24. 24.
    Shah AA, Bourne TD, Murali R. BAP1 protein loss by immunohistochemistry: a potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology. 2013;45(7):651–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Babburi S, Subramanyam RV, Aparna V, Sowjanya P. Intraoral malignant melanoma. Niger Med J. 2013;54(4):278–81.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Sette G, Fecchi K, Salvati V, Lotti F, Pilozzi E, Duranti E, et al. Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts. J Exp Clin Cancer Res. 2013;32(1):91–4.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Micali G, Lacarrubba F, Bhatt K, Nasca MR. Medical approaches to non-melanoma skin cancer. Expert Rev Anticancer Ther. 2013;13(12):1409–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Kakavand H, Scolyer RA, Thompson JF, Mann GJ. Identification of new prognostic biomarkers for Stage III metastatic melanoma patients. Oncoimmunology. 2013;2(9):564–8.CrossRefGoogle Scholar
  29. 29.
    Lee SW, Kim SG, Park YW, Kweon HY, Kim JY, Rotaru H. Cisplatin and 4-hexylresorcinol synergise to decrease metastasis and increase survival rate in an oral mucosal melanoma xenograft model: a preliminary study. Tumor Biol. 2013;34(3):1595–603.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ling Zhou
    • 1
    • 2
  • Yuangang Lu
    • 1
  • Guihong Yang
    • 1
  • Jinjin Wu
    • 1
  1. 1.Department of Dermatology, Daping HospitalThird Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of DermatologyWuhan General Hospital, Guangzhou CommandWuhanPeople’s Republic of China

Personalised recommendations