Advertisement

Tumor Biology

, Volume 35, Issue 6, pp 5307–5314 | Cite as

Dihydroartemisinin induces apoptosis in colorectal cancer cells through the mitochondria-dependent pathway

  • Min Lu
  • Luhaoran Sun
  • Jin Zhou
  • Jing Yang
Research Article

Abstract

Dihydroartemisinin (DHA), a semisynthetic derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua, has been shown to exhibit antitumor activity in various cancer cells, including colorectal cancer. However, the detailed mechanisms underlying its antitumor activity in colorectal cancer remain to be elucidated. In the present study, we investigated DHA-induced apoptosis in human colorectal cancer HCT-116 cells in vitro. The results showed that DHA treatment significantly reduced cell viability in a concentration- and time-dependent manner. Furthermore, DHA induced G1 cell cycle arrest, apoptotic cell death, and accumulation of reactive oxygen species (ROS). We also found that DHA decreased the mitochondrial membrane potential; activated the caspase-3, caspase-8, and caspase-9; and increased the ratio of Bax/Bcl-2. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria were observed. Strikingly, the free radical scavenger N-acetylcysteine or the caspase-3 inhibitor Ac-DEVD-CHO significantly prevented DHA-induced apoptotic cell death. Taken together, we concluded that DHA-triggered apoptosis in HCT-116 cells occurs through the ROS-mediated mitochondria-dependent pathway. Our data suggest that DHA has great potential to be developed as a novel therapeutic agent for the treatment of human colorectal cancer.

Keywords

Colorectal cancer Dihydroartemisinin Apoptosis Mitochondria Reactive oxygen species 

Notes

Acknowledgement

This study was supported by a grant from the National Natural Science Foundation of China (grant no.: 81250020).

Conflict of interest

None

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  2. 2.
    Davies RJ, Miller R, Coleman N. Colorectal cancer screening: prospects for molecular stool analysis. Nat Rev Cancer. 2005;5(3):199–209. doi: 10.1038/nrc1545.CrossRefPubMedGoogle Scholar
  3. 3.
    Lurje G, Zhang W, Lenz HJ. Molecular prognostic markers in locally advanced colon cancer. Clin Colorectal Cancer. 2007;6(10):683–90. doi: 10.3816/CCC.2007.n.037.CrossRefPubMedGoogle Scholar
  4. 4.
    Prabhudesai SG, Rekhraj S, Roberts G, Darzi AW, Ziprin P. Apoptosis and chemo-resistance in colorectal cancer. J Surg Oncol. 2007;96(1):77–88. doi: 10.1002/jso.20785.CrossRefPubMedGoogle Scholar
  5. 5.
    Marin JJ, Sanchez de Medina F, Castano B, Bujanda L, Romero MR, Martinez-Augustin O, et al. Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab Rev. 2012;44(2):148–72. doi: 10.3109/03602532.2011.638303.CrossRefPubMedGoogle Scholar
  6. 6.
    Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011;17(10):1217–20. doi: 10.1038/nm.2471.CrossRefPubMedGoogle Scholar
  7. 7.
    Gordi T, Lepist EI. Artemisinin derivatives: toxic for laboratory animals, safe for humans? Toxicol Lett. 2004;147(2):99–107.CrossRefPubMedGoogle Scholar
  8. 8.
    Li Y. Qinghaosu (artemisinin): chemistry and pharmacology. Acta Pharmacol Sin. 2012;33(9):1141–6. doi: 10.1038/aps.2012.104.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Lu YY, Chen TS, Wang XP, Li L. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques. J Biomed Opt. 2010;15(4):046028. doi: 10.1117/1.3481141.CrossRefPubMedGoogle Scholar
  10. 10.
    Mao H, Gu H, Qu X, Sun J, Song B, Gao W, et al. Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int J Mol Med. 2013;31(1):213–8. doi: 10.3892/ijmm.2012.1176.PubMedGoogle Scholar
  11. 11.
    Chen H, Sun B, Pan S, Jiang H, Sun X. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs. 2009;20(2):131–40. doi: 10.1097/CAD.0b013e3283212ade.CrossRefPubMedGoogle Scholar
  12. 12.
    He Q, Shi J, Shen XL, An J, Sun H, Wang L, et al. Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther. 2010;9(10):819–24.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen T, Li M, Zhang R, Wang H. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med. 2009;13(7):1358–70. doi: 10.1111/j.1582-4934.2008.00360.x.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Lu JJ, Chen SM, Zhang XW, Ding J, Meng LH. The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest New Drugs. 2011;29(6):1276–83. doi: 10.1007/s10637-010-9481-8.CrossRefPubMedGoogle Scholar
  15. 15.
    Roue G, Bitton N, Yuste VJ, Montange T, Rubio M, Dessauge F, et al. Mitochondrial dysfunction in CD47-mediated caspase-independent cell death: ROS production in the absence of cytochrome c and AIF release. Biochimie. 2003;85(8):741–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X, et al. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappaB. J Cancer Res Clin Oncol. 2010;136(6):897–903. doi: 10.1007/s00432-009-0731-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Sun H, Meng X, Han J, Zhang Z, Wang B, Bai X, et al. Anti-cancer activity of DHA on gastric cancer—an in vitro and in vivo study. Tumour Biol. 2013. doi: 10.1007/s13277-013-0963-0.Google Scholar
  18. 18.
    Du XX, Li YJ, Wu CL, Zhou JH, Han Y, Sui H, et al. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed Pharmacother. 2013;67(5):417–24. doi: 10.1016/j.biopha.2013.01.013.CrossRefPubMedGoogle Scholar
  19. 19.
    Jiao Y, Ge CM, Meng QH, Cao JP, Tong J, Fan SJ. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin. 2007;28(7):1045–56. doi: 10.1111/j.1745-7254.2007.00612.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Ji Y, Zhang YC, Pei LB, Shi LL, Yan JL, Ma XH. Anti-tumor effects of dihydroartemisinin on human osteosarcoma. Mol Cell Biochem. 2011;351(1–2):99–108. doi: 10.1007/s11010-011-0716-6.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang CZ, Zhang H, Yun J, Chen GG, Lai PB. Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol. 2012;83(9):1278–89. doi: 10.1016/j.bcp.2012.02.002.CrossRefPubMedGoogle Scholar
  22. 22.
    Gao X, Luo Z, Xiang T, Wang K, Li J, Wang P. Dihydroartemisinin induces endoplasmic reticulum stress-mediated apoptosis in HepG2 human hepatoma cells. Tumori. 2011;97(6):771–80.PubMedGoogle Scholar
  23. 23.
    Kong R, Jia G, Cheng ZX, Wang YW, Mu M, Wang SJ, et al. Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5. PLoS One. 2012;7(5):e37222. doi: 10.1371/journal.pone.0037222.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim SJ, Kim MS, Lee JW, Lee CH, Yoo H, Shin SH, et al. Dihydroartemisinin enhances radiosensitivity of human glioma cells in vitro. J Cancer Res Clin Oncol. 2006;132(2):129–35. doi: 10.1007/s00432-005-0052-x.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15(22):2922–33.PubMedGoogle Scholar
  27. 27.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–32.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Colorectal SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangPeople’s Republic of China
  2. 2.Seven-year System, Department of Clinical MedicineChina Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations