Tumor Biology

, Volume 35, Issue 6, pp 5101–5110 | Cite as

Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery

  • Mihaela Aldea
  • Lucian Craciun
  • Ciprian Tomuleasa
  • Ioana Berindan-Neagoe
  • Gabriel Kacso
  • Ioan Stefan Florian
  • Carmen Crivii


After sitting many years on the shelves of drug stores as a harmless antidiabetic drug, metformin comes back in the spotlight of the scientific community as a surprisingly effective antineoplastic drug. Metformin targets multiple pathways that play pivotal roles in cancer progression, impacting various cellular processes, such as proliferation, cell death, metabolism, and even the cancer stemness features. The biomolecular characteristics of tumors, such as appropriate expression of organic cation transporters or genetic alterations including p53, K-ras, LKB1, and PI3K may impact metformin’s anticancer efficiency. This could indicate a need for tumor genetic profiling in order to identify patients most likely to benefit from metformin treatment. Considering that the majority of experimental models suggest that higher, supra-clinical doses of metformin should be used in order to obtain an antineoplastic effect, new ways of drug delivery could be developed, such as metformin-loaded nanoparticles or incorporation of metformin into microparticles used in transarterial chemoembolization, with the aim of obtaining higher intratumoral drug concentrations and a targeted therapy which will ultimately maximize metformin’s efficacy.


Cancer Metformin Stem Genetic Nanoparticle Chemoembolization 


  1. 1.
    Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5. doi:10.1136/bmj.38415.708634.F7.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism: Clinical and Experimental. 2013;62(7):922–34. doi:10.1016/j.metabol.2013.01.014.Google Scholar
  3. 3.
    Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP, et al. Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomised clinical trials. Diabetologia. 2012;55(10):2593–603. doi:10.1007/s00125-012-2653-7.PubMedGoogle Scholar
  4. 4.
    Skinner HD, Crane CH, Garrett CR, Eng C, Chang GJ, Skibber JM, et al. Metformin use and improved response to therapy in rectal cancer. Cancer Medicine. 2013;2(1):99–107. doi:10.1002/cam4.54.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Garrett CR, Hassabo HM, Bhadkamkar NA, Wen S, Baladandayuthapani V, Kee BK, et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer Suppl. 2012;106(8):1374–8. doi:10.1038/bjc.2012.71.Google Scholar
  6. 6.
    Lee JH, Kim TI, Jeon SM, Hong SP, Cheon JH, Kim WH. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int J Cancer. 2012;131(3):752–9. doi:10.1002/ijc.26421.PubMedGoogle Scholar
  7. 7.
    Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. Ital J Gastroenterol Hepatol. 2011;26(5):858–65. doi:10.1111/j.1440-1746.2011.06664.x.Google Scholar
  8. 8.
    Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care. 2012;35(2):299–304. doi:10.2337/dc11-1313.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2012;18(10):2905–12. doi:10.1158/1078-0432.CCR-11-2994.Google Scholar
  10. 10.
    He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SC. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol : official journal of the European Society for Medical Oncology / ESMO. 2012;23(7):1771–80. doi:10.1093/annonc/mdr534.Google Scholar
  11. 11.
    Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118(5):1202–11. doi:10.1002/cncr.26439.PubMedCentralPubMedGoogle Scholar
  12. 12.
    He XX, Tu SM, Lee MH, Yeung SC. Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol: official journal of the European Society for Medical Oncology / ESMO. 2011;22(12):2640–5. doi:10.1093/annonc/mdr020.Google Scholar
  13. 13.
    Romero IL, McCormick A, McEwen KA, Park S, Karrison T, Yamada SD, et al. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet Gynecol. 2012;119(1):61–7. doi:10.1097/AOG.0b013e3182393ab3.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Kumar S, Meuter A, Thapa P, Langstraat C, Giri S, Chien J, et al. Metformin intake is associated with better survival in ovarian cancer: a case-control study. Cancer. 2013;119(3):555–62. doi:10.1002/cncr.27706.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Tan BX, Yao WX, Ge J, Peng XC, Du XB, Zhang R, et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer. 2011;117(22):5103–11. doi:10.1002/cncr.26151.PubMedGoogle Scholar
  16. 16.
    Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol: official journal of the American Society of Clinical Oncology. 2002;20(1):42–51.Google Scholar
  17. 17.
    Pollak M, Chapman J, Shepherd L, Meng D, Richardson P, Wilson C et al. Insulin resistance, estimated by serum C-peptide level, is associated with reduced event-free survival for postmenopausal women in NCIC CTG MA. 14 adjuvant breast cancer trial. J Clin Oncol 2006; 24: Abstract 524Google Scholar
  18. 18.
    Irwin ML, Duggan C, Wang CY, Smith AW, McTiernan A, Baumgartner RN, et al. Fasting C-peptide levels and death resulting from all causes and breast cancer: the health, eating, activity, and lifestyle study. J Clin Oncol: Official Journal of the American Society of Clinical Oncology. 2011;29(1):47–53. doi:10.1200/JCO.2010.28.4752.Google Scholar
  19. 19.
    Jalving M, Gietema JA, Lefrandt JD, de Jong S, Reyners AK, Gans RO, et al. Metformin: taking away the candy for cancer? Eur J Cancer. 2010;46(13):2369–80. doi:10.1016/j.ejca.2010.06.012.PubMedGoogle Scholar
  20. 20.
    Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab: TEM. 2013;24(9):469–80. doi:10.1016/j.tem.2013.05.004.PubMedGoogle Scholar
  21. 21.
    Carling D. The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci. 2004;29(1):18–24. doi:10.1016/j.tibs.2003.11.005.PubMedGoogle Scholar
  22. 22.
    Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328–41. doi:10.1161/01.RES.0000256090.42690.05.PubMedGoogle Scholar
  23. 23.
    Larsson O, Morita M, Topisirovic I, Alain T, Blouin MJ, Pollak M, et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci U S A. 2012;109(23):8977–82. doi:10.1073/pnas.1201689109.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Liao H, Zhou Q, Gu Y, Duan T, Feng Y. Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep. 2012;27(6):1873–8. doi:10.3892/or.2012.1745.PubMedGoogle Scholar
  25. 25.
    Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res. 2013;45(5):387–90. doi:10.1055/s-0032-1331204.PubMedGoogle Scholar
  26. 26.
    Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401. doi:10.1016/j.cmet.2010.03.014.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, et al. Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle. 2011;10(24):4208–16. doi:10.4161/cc.10.24.18487.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 2011;10(23):4047–64. doi:10.4161/cc.10.23.18151.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death & Disease. 2011;2:e199. doi:10.1038/cddis.2011.86.Google Scholar
  30. 30.
    Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death & Disease. 2012;3:e275. doi:10.1038/cddis.2012.13.Google Scholar
  31. 31.
    Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008;283(7):3979–87. doi:10.1074/jbc.M705232200.PubMedGoogle Scholar
  32. 32.
    Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, et al. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012;72(17):4394–404. doi:10.1158/0008-5472.CAN-12-0429.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34. doi:10.1016/j.cell.2006.05.034.PubMedGoogle Scholar
  34. 34.
    Naidu SR, Lakhter AJ, Androphy EJ. PIASy-mediated Tip60 sumoylation regulates p53-induced autophagy. Cell Cycle. 2012;11(14):2717–28. doi:10.4161/cc.21091.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Fimia GM, Piacentini M. Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci: CMLS. 2010;67(10):1581–8. doi:10.1007/s00018-010-0284-z.PubMedGoogle Scholar
  36. 36.
    Song CW, Lee H, Dings RP, Williams B, Powers J, Santos TD, et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Scientific Reports. 2012;2:362. doi:10.1038/srep00362.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 2011;71(9):3196–201. doi:10.1158/0008-5472.CAN-10-3471.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol. 2010;22(2):181–5. doi:10.1016/j.ceb.2009.12.001.PubMedGoogle Scholar
  39. 39.
    Lai KP, Leong WF, Chau JF, Jia D, Zeng L, Liu H, et al. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. The EMBO Journal. 2010;29(17):2994–3006. doi:10.1038/emboj.2010.166.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res: MCR. 2011;9(5):603–15. doi:10.1158/1541-7786.MCR-10-0343.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Cufi S, Corominas-Faja B, Vazquez-Martin A, Oliveras-Ferraros C, Dorca J, Bosch-Barrera J, et al. Metformin-induced preferential killing of breast cancer initiating CD44 + CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget. 2012;3(4):395–8.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507–11. doi:10.1158/0008-5472.CAN-09-2994.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Wurth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A, et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle. 2013;12(1):145–56. doi:10.4161/cc.23050.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104(41):16158–63. doi:10.1073/pnas.0702596104.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle. 2011;10(8):1271–86. doi:10.4161/cc.10.8.15330.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Canc Prev Res. 2012;5(3):355–64. doi:10.1158/1940-6207.CAPR-11-0299.Google Scholar
  47. 47.
    Gou S, Cui P, Li X, Shi P, Liu T, Wang C. Low concentrations of metformin selectively inhibit CD133(+) cell proliferation in pancreatic cancer and have anticancer action. PloS One. 2013;8(5):e63969. doi:10.1371/journal.pone.0063969.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Shank JJ, Yang K, Ghannam J, Cabrera L, Johnston CJ, Reynolds RK, et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol. 2012;127(2):390–7. doi:10.1016/j.ygyno.2012.07.115.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A. 2002;99(25):16220–5. doi:10.1073/pnas.252462599.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Bose D, Zimmerman LJ, Pierobon M, Petricoin E, Tozzi F, Parikh A, et al. Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br J Cancer. 2011;105(11):1759–67. doi:10.1038/bjc.2011.449.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Soritau O, Tomuleasa C, Aldea M, Petrushev B, Susman S, Gheban D, et al. Metformin plus temozolomide-based chemotherapy as adjuvant treatment for WHO grade III and IV malignant gliomas. J BUON : Official Journal of the Balkan Union of Oncology. 2011;16(2):282–9.Google Scholar
  52. 52.
    Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics. 2008;9(4):415–22. doi:10.2217/14622416.9.4.415.PubMedGoogle Scholar
  53. 53.
    Choi MK, Song IS. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243–53.PubMedGoogle Scholar
  54. 54.
    Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun. 2011;414(4):694–9. doi:10.1016/j.bbrc.2011.09.134.PubMedGoogle Scholar
  55. 55.
    Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genomics. 2010;20(11):687–99. doi:10.1097/FPC.0b013e32833fe789.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Patel H, Younis RH, Ord RA, Basile JR, Schneider A. Differential expression of organic cation transporter OCT-3 in oral premalignant and malignant lesions: potential implications in the antineoplastic effects of metformin. J Oral Pathol Med : Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2013;42(3):250–6. doi:10.1111/j.1600-0714.2012.01196.x.Google Scholar
  57. 57.
    Lozano E, Herraez E, Briz O, Robledo VS, Hernandez-Iglesias J, Gonzalez-Hernandez A, et al. Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. BioMed Res Int. 2013;2013:692071. doi:10.1155/2013/692071.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Yang J, Kalogerou M, Gallacher J, Sampson JR, Shen MH. Renal tumours in a Tsc1+/- mouse model show epigenetic suppression of organic cation transporters Slc22a1, Slc22a2 and Slc22a3, and do not respond to metformin. Eur J Cancer. 2013;49(6):1479–90. doi:10.1016/j.ejca.2012.10.027.PubMedGoogle Scholar
  59. 59.
    Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–83. doi:10.1038/nrm2147.PubMedGoogle Scholar
  60. 60.
    Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137.PubMedGoogle Scholar
  61. 61.
    Soussi T, Beroud C. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat. 2003;21(3):192–200. doi:10.1002/humu.10189.PubMedGoogle Scholar
  62. 62.
    Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117(2):326–36. doi:10.1172/JCI28833.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745–52. doi:10.1158/0008-5472.CAN-06-4447.PubMedGoogle Scholar
  64. 64.
    Muaddi H, Chowdhury S, Vellanki R, Zamiara P, Koritzinsky M. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology. 2013. doi:10.1016/j.radonc.2013.06.014
  65. 65.
    Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9(7):517–31. doi:10.1038/nrm2438.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310. doi:10.1038/sj.onc.1210422.PubMedGoogle Scholar
  67. 67.
    Morgillo F, Sasso FC, Della Corte CM, Vitagliano D, D’Aiuto E, Troiani T, et al. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin Cancer Res: an Official Journal of the American Association for Cancer Research. 2013;19(13):3508–19. doi:10.1158/1078-0432.CCR-12-2777.Google Scholar
  68. 68.
    Ma Y, Guo FC, Wang W, Shi HS, Li D, Wang YS. Kras gene mutation as a predictor of cancer cell responsiveness to metformin. Mol Med Rep. 2013;8(3):763–8. doi:10.3892/mmr.2013.1596.PubMedGoogle Scholar
  69. 69.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.PubMedGoogle Scholar
  70. 70.
    Burmer GC, Loeb LA. Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc Natl Acad Sci U S A. 1989;86(7):2403–7.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Canc Res: an Official Journal of the American Association for Cancer Research. 2006;12(5):1647–53. doi:10.1158/1078-0432.CCR-05-1981.Google Scholar
  72. 72.
    Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–6. doi:10.1126/science.1120781.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448(7155):807–10. doi:10.1038/nature06030.PubMedGoogle Scholar
  74. 74.
    Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T, et al. Somatic LKB1 mutations promote cervical cancer progression. PloS one. 2009;4(4):e5137. doi:10.1371/journal.pone.0005137.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Tsai LH, Chen PM, Cheng YW, Chen CY, Sheu GT, Wu TC et al. LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene. 2013. doi:10.1038/onc.2013.353.
  76. 76.
    Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene. 2011;30(10):1174–82. doi:10.1038/onc.2010.483.PubMedGoogle Scholar
  77. 77.
    Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, et al. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene. 2007;26(40):5911–8. doi:10.1038/sj.onc.1210418.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105(7):2652–7. doi:10.1073/pnas.0712169105.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005;24(8):1477–80. doi:10.1038/sj.onc.1208304.PubMedGoogle Scholar
  80. 80.
    Rosty C, Young JP, Walsh MD, Clendenning M, Sanderson K, Walters RJ, et al. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival. PloS one. 2013;8(6):e65479. doi:10.1371/journal.pone.0065479.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Cufi S, Corominas-Faja B, Lopez-Bonet E, Bonavia R, Pernas S, Lopez IA, et al. Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin. Oncotarget. 2013;4(9):1484–95.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA, Vercesi AE, et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res: an Official Journal of the American Association for Cancer Research. 2011;17(12):3993–4005. doi:10.1158/1078-0432.CCR-10-2243.Google Scholar
  83. 83.
    Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A. 2001;98(18):10314–9. doi:10.1073/pnas.171076798.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Rosilio C, Lounnas N, Nebout M, Imbert V, Hagenbeek T, Spits H, et al. The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Lett. 2013;336(1):114–26. doi:10.1016/j.canlet.2013.04.015.PubMedGoogle Scholar
  85. 85.
    Yin Y, Shen WH. PTEN: a new guardian of the genome. Oncogene. 2008;27(41):5443–53. doi:10.1038/onc.2008.241.PubMedGoogle Scholar
  86. 86.
    Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48(3):R31–43. doi:10.1530/JME-12-0007.PubMedGoogle Scholar
  87. 87.
    Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Canc Discov. 2012;2(9):778–90. doi:10.1158/2159-8290.CD-12-0263.Google Scholar
  88. 88.
    Pasquel FJ, Klein R, Adigweme A, Hinedi Z, Coralli R, Pimentel JL et al. Metformin-associated lactic acidosis. The American Journal of the Medical Sciences. 2013. doi:10.1097/MAJ.0b013e3182a562b7
  89. 89.
    Avci D, Cetinkaya A, Karahan S, Oguzhan N, Karagoz H, Basak M, et al. Suicide commitment with metformin: our experience with five cases. Ren Fail. 2013;35(6):863–5. doi:10.3109/0886022X.2013.801299.PubMedGoogle Scholar
  90. 90.
    Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Patents on Drug Delivery and Formulation. 2007;1(1):37–51.PubMedGoogle Scholar
  91. 91.
    Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm. 2013;441(1–2):202–12. doi:10.1016/j.ijpharm.2012.11.042.PubMedGoogle Scholar
  92. 92.
    Snima K, Jayakumar R, Unnikrishnan A, Nair SV, Lakshmanan V-K. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym. 2012;89(3):1003–7.PubMedGoogle Scholar
  93. 93.
    Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release: Official Journal of the Controlled Release Society. 2000;65(1–2):133–48.Google Scholar
  94. 94.
    Lekshmi UM, Reddy PN. Preliminary toxicological report of metformin hydrochloride loaded polymeric nanoparticles. Toxicol Int. 2012;19(3):267–72. doi:10.4103/0971-6580.103667.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman MD. Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. J Pharm Sci. 2002;91(1):157–70.PubMedGoogle Scholar
  96. 96.
    Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer. Tumori. 2008;94(2):271–7.PubMedGoogle Scholar
  97. 97.
    Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009;106(10):3907–12. doi:10.1073/pnas.0807991106.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Sato A, Sunayama J, Okada M, Watanabe E, Seino S, Shibuya K, et al. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Translational Medicine. 2012;1(11):811–24. doi:10.5966/sctm.2012-0058.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Surg Pathol. 1954;30(5):969–77.Google Scholar
  100. 100.
    Vogl TJ, Naguib NN, Nour-Eldin NE, Rao P, Emami AH, Zangos S, et al. Review on transarterial chemoembolization in hepatocellular carcinoma: palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur J Radiol. 2009;72(3):505–16. doi:10.1016/j.ejrad.2008.08.007.PubMedGoogle Scholar
  101. 101.
    Giunchedi P, Maestri M, Gavini E, Dionigi P, Rassu G. Transarterial chemoembolization of hepatocellular carcinoma. Agents and drugs: an overview. Part 1. Expert Opin Drug Deliv. 2013;10(5):679–90.PubMedGoogle Scholar
  102. 102.
    Cai X, Hu X, Cai B, Wang Q, Li Y, Tan X, et al. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo. Oncol Rep. 2013;30(5):2449–57. doi:10.3892/or.2013.2718.PubMedGoogle Scholar
  103. 103.
    Zheng L, Yang W, Wu F, Wang C, Yu L, Tang L, et al. Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2013;19(19):5372–80. doi:10.1158/1078-0432.CCR-13-0203.Google Scholar
  104. 104.
    Saito T, Chiba T, Yuki K, Zen Y, Oshima M, Koide S, et al. Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PloS One. 2013;8(7):e70010. doi:10.1371/journal.pone.0070010.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Toffanin S, Friedman SL, Llovet JM. Obesity, inflammatory signaling, and hepatocellular carcinoma-an enlarging link. Cancer Cell. 2010;17(2):115–7. doi:10.1016/j.ccr.2010.01.018.PubMedGoogle Scholar
  106. 106.
    Zeng Z, Ren J, O’Neil M, Zhao J, Bridges B, Cox J, et al. Impact of stem cell marker expression on recurrence of TACE-treated hepatocellular carcinoma post liver transplantation. BMC Cancer. 2012;12:584. doi:10.1186/1471-2407-12-584.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Erices R, Bravo ML, Gonzalez P, Oliva B, Racordon D, Garrido M et al. Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells. Reproductive Sciences. 2013. doi:10.1177/1933719113488441.
  108. 108.
    Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab. 2012;97(4):E510–20. doi:10.1210/jc.2011-1754.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Mihaela Aldea
    • 1
  • Lucian Craciun
    • 1
  • Ciprian Tomuleasa
    • 1
    • 2
  • Ioana Berindan-Neagoe
    • 1
    • 3
  • Gabriel Kacso
    • 4
  • Ioan Stefan Florian
    • 5
  • Carmen Crivii
    • 6
  1. 1.Research Center for Functional Genomics, Biomedicine and Translational MedicineIuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania
  2. 2.Department of HematologyIon Chiricuta Comprehensive Cancer Center in Cluj Napoca, RomaniaCluj-NapocaRomania
  3. 3.Department of GeneticsIon Chiricuta Comprehensive Cancer Center in Cluj Napoca, RomaniaCluj-NapocaRomania
  4. 4.Department of Medical Oncology and RadiotherapyIuliu Hatieganu University of Medicine and PharmacyCluj NapocaRomania
  5. 5.Department of NeurosurgeryIuliu Hatieganu University of Medicine and PharmacyCluj NapocaRomania
  6. 6.Department of Morphological SciencesIuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania

Personalised recommendations