Advertisement

Tumor Biology

, Volume 35, Issue 5, pp 5037–5048 | Cite as

Human Sprouty1 suppresses growth, migration, and invasion in human breast cancer cells

  • Ahmed H. Mekkawy
  • Mohammad H. Pourgholami
  • David L. Morris
Research Article

Abstract

Breast cancer is the most common cancer and the leading cause of cancer death in women worldwide. Expression of human Sprouty1 (hSpry1) gene is downregulated in most breast cancer patients, implicating it as an important tumor suppressor gene. So, we hypothesized that overexpression of hSpry1 gene may suppress breast cancer cell growth, migration, and invasion. Here, we demonstrate that in breast cancer cell lines, MDA-MB-231 and T47D, transfection-induced overexpression of hSpry1 reduced cell population, proliferation, and colony formation in vitro without affecting cell apoptosis. Adhesion molecules act as both positive and negative modulators of cellular migration and invasion. Here, we found that overexpression of hSpry1 enhances the initial establishment events in breast cancer cell adhesion to type IV collagen and vitronectin. Moreover, the overexpression of hSpry1 in the highly invasive MDA-MB-231 breast cancer cells causes a significant reduction in cellular migration and invasion through Matrigel membranes. In addition, we showed that hSpry1 overexpression prevents VEGF secretion. VEGF is essential for primary tumor growth, migration, and invasion. Thus, our study provides a novel mechanism of tumor suppression activity of hSpry1.

Keywords

Breast cancer Sprouty Proliferation Adhesion Migration Invasion VEGF 

Notes

Conflicts of interest

None

References

  1. 1.
    Hacohen N et al. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998;92(2):253–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Tefft JD et al. Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol. 1999;9:219–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Casci T, Vinos J, Freeman M. Sprouty, an intracellular inhibitor of Ras signaling. Cell. 1999;96(5):655–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Sasaki A et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol. 2003;5(5):427–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Rubin C et al. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol. 2003;13(4):297–307.CrossRefPubMedGoogle Scholar
  6. 6.
    Impagnatiello MA et al. Mammalian sprouty-1 and −2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol. 2001;152(5):1087–98.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gross I et al. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem. 2001;276(49):46460–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Lo TL et al. The Ras/Mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, Sprouty 1 and Sprouty 2 are deregulated in breast cancer. Cancer Res. 2004;64:6127–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Kwabi-Addo B et al. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res. 2004;64:4728–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Sirivatanauksorn Y et al. Differential expression of sprouty genes in hepatocellular carcinoma. J Surg Oncol. 2012;105(3):273–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Fong CW et al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res. 2006;66(4):2048–58.CrossRefPubMedGoogle Scholar
  12. 12.
    Mekkawy AH et al. Novel protein interactors of urokinase-type plasminogen activator receptor. Biochem Biophys Res Commun. 2010;399(4):738–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Mekkawy AH, Morris DL. Human Sprouty1 suppresses urokinase receptor-stimulated cell migration and invasion. ISRN Biochem. 2013;2013:7.CrossRefGoogle Scholar
  14. 14.
    Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Pourgholami MH et al. Minocycline inhibits growth of epithelial ovarian cancer. Gynecol Oncol. 2012;125(2):433–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Mekkawy AH, Morris DL, Pourgholami MH. HAX1 augments cell proliferation, migration, adhesion, and invasion induced by urokinase-type plasminogen activator receptor. J Oncol. 2012;2012:950749.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McClay, D.R. and P.L. Hertzler, Quantitative measurement of cell adhesion using centrifugal force. Curr Protoc Cell Biol, 2001. Chapter 9: p. Unit 9 2.Google Scholar
  18. 18.
    Parkin DM, Fernandez LM. Use of statistics to assess the global burden of breast cancer. Breast J. 2006;12 Suppl 1:S70–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Simon MA. Receptor tyrosine kinases: specific outcomes from general signals. Cell. 2000;103(1):13–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Ozaki K et al. Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. J Cell Sci. 2005;118(Pt 24):5861–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee S et al. Sprouty1 inhibits angiogenesis in association with up-regulation of p21 and p27. Mol Cell Biochem. 2010;338(1–2):255–61.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gross I et al. The receptor tyrosine kinase regulator Sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. J Biol Chem. 2003;278(42):41420–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2.CrossRefPubMedGoogle Scholar
  24. 24.
    Sylvester PW. Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol. 2011;716:157–68.CrossRefPubMedGoogle Scholar
  25. 25.
    Aumailley M, Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol. 1986;103(4):1569–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Felding-Habermann B, Cheresh DA. Vitronectin and its receptors. Curr Opin Cell Biol. 1993;5(5):864–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Gui GP et al. Altered cell-matrix contact: a prerequisite for breast cancer metastasis? Br J Cancer. 1997;75(5):623–33.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hurt EM et al. Identification of vitronectin as an extrinsic inducer of cancer stem cell differentiation and tumor formation. Stem Cells. 2010;28(3):390–8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    De Bock CE et al. Interaction between urokinase receptor and heat shock protein MRJ enhances cell adhesion. Int J Oncol. 2010;36(5):1155–63.PubMedGoogle Scholar
  30. 30.
    Akbulut, S., et al., Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol Biol Cell, 2010Google Scholar
  31. 31.
    Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2(10):795–803.CrossRefPubMedGoogle Scholar
  33. 33.
    Tang L et al. Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem Toxicol. 2013;56:204–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu P et al. Matrine suppresses breast cancer cell proliferation and invasion via VEGF-Akt-NF-kappaB signaling. Cytotechnology. 2009;59(3):219–29.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Salva E et al. Local delivery of chitosan/VEGF siRNA nanoplexes reduces angiogenesis and growth of breast cancer in vivo. Nucleic Acid Ther. 2012;22(1):40–8.PubMedGoogle Scholar
  36. 36.
    Cardones AR, Banez LL. VEGF inhibitors in cancer therapy. Curr Pharm Des. 2006;12(3):387–94.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ahmed H. Mekkawy
    • 1
  • Mohammad H. Pourgholami
    • 1
  • David L. Morris
    • 1
    • 2
  1. 1.Cancer Research LaboratoriesUniversity of New South Wales Department of SurgerySydneyAustralia
  2. 2.Department of Surgery, St George HospitalUniversity of New South WalesSydneyAustralia

Personalised recommendations