Tumor Biology

, Volume 35, Issue 5, pp 4875–4884 | Cite as

Brain tumor senescence might be mediated by downregulation of S-phase kinase-associated protein 2 via butylidenephthalide leading to decreased cell viability

  • Mao-Hsuan Huang
  • Shinn-Zong Lin
  • Po-Cheng Lin
  • Tzyy-Wen Chiou
  • Yeu-Wei Harn
  • Li-Ing Ho
  • Tzu-Min Chan
  • Chih-Wei Chou
  • Chang-Han Chuang
  • Hong-Lin Su
  • Horng-Jyh Harn
Research Article

Abstract

Developing an effective drug for treating human glioblastoma multiform (GBM) has been investigated persistently. A pure compound butylidenephthalide (BP), isolated from Angelica sinensis, has been shown the activities to arrest the growth and initiate apoptosis of GBM in our previous reports. In this study, we further demonstrated that BP treatment accelerates the cell senescence in a dose-dependent manner in vitro and in vivo. S-phase kinase-associated protein 2 (Skp2), a proto-oncogene, is generally upregulated in cancer. We found that it was downregulated in BP-treated GBM cells. The downregulation of Skp2 is parallel with increasing p16 and p21 expression which causes G0/G1 arrest and tumor cell senescence. We also found that restoring the Skp2 protein level by exogenous overexpression prevents the BP-induced cell senescence. Therefore, the linkage between cell senescence and Skp2 expression is strengthened. Promoter binding analysis further detailed that the BP-mediated SP1 reduction might involve in the Skp2 downregulation. In summary, these results emphasize that BP-triggered senescence in GBM cells is highly associated with its control on Skp2 regulation.

Keyword

S-phase associated kinase protein 2 Glioblastoma multiform Butylidenephthalide Senescence 

Abbreviations

BP

Butylidenephthalide

GBM

Glioblastoma multiform

Skp2

S-phase kinase-associated protein 2

Notes

Acknowledgments

This work was supported by National Science Council of the Republic of China (NSC 102-2320-B-039-011), Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH102-TD-B-111-004); Aim for the Top University Plan of the National Chiao Tung University and Ministry of Education, Cancer Research Center of Excellence (Taiwan) and Ministry of Economic Affairs (102-EC-17-A-19-I1-0051).

Conflicts of interest

None

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi: 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci Off J Soc Neurosci. 2006;26(25):6781–90. doi: 10.1523/JNEUROSCI.0514-06.2006.CrossRefGoogle Scholar
  3. 3.
    Levin VA. Neuro-oncology: an overview. Arch Neurol. 1999;56(4):401–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. doi: 10.1056/NEJMoa043331.CrossRefPubMedGoogle Scholar
  5. 5.
    Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(8):1624–36. doi: 10.1200/JCO.2003.05.063.CrossRefGoogle Scholar
  6. 6.
    Sathornsumetee S, Rich JN. New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther. 2006;6(7):1087–104. doi: 10.1586/14737140.6.7.1087.CrossRefPubMedGoogle Scholar
  7. 7.
    Reardon DA, Wen PY. Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist. 2006;11(2):152–64. doi: 10.1634/theoncologist.11-2-152.CrossRefPubMedGoogle Scholar
  8. 8.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi: 10.1056/NEJMoa043330.CrossRefPubMedGoogle Scholar
  9. 9.
    Tsai NM, Lin SZ, Lee CC, Chen SP, Su HC, Chang WL, et al. The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo. Clin Cancer Res. 2005;11(9):3475–84. doi: 10.1158/1078-0432.CCR-04-1827.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsai NM, Chen YL, Lee CC, Lin PC, Cheng YL, Chang WL, et al. The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J Neurochem. 2006;99(4):1251–62. doi: 10.1111/j.1471-4159.2006.04151.x.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin PC, Chen YL, Chiu SC, Yu YL, Chen SP, Chien MH, et al. Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. J Neurochem. 2008;106(3):1017–26. doi: 10.1111/j.1471-4159.2008.05432.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30. doi: 10.1038/nature03918.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005;436(7051):642. doi: 10.1038/436642a.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakayama KI, Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol. 2005;16(3):323–33. doi: 10.1016/j.semcdb.2005.02.010.CrossRefPubMedGoogle Scholar
  15. 15.
    Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol. 2003;13(1):41–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Kipreos ET, Pagano M. The F-box protein family. Reviews. 2000;1(5):3002. doi: 10.1186/gb-2000-1-5-reviews3002.Google Scholar
  17. 17.
    Westermann F, Henrich KO, Wei JS, Lutz W, Fischer M, Konig R, et al. High Skp2 expression characterizes high-risk neuroblastomas independent of MYCN status. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(16):4695–703. doi: 10.1158/1078-0432.CCR-06-2818.CrossRefGoogle Scholar
  18. 18.
    Chiappetta G, De Marco C, Quintiero A, Califano D, Gherardi S, Malanga D, et al. Overexpression of the S-phase kinase-associated protein 2 in thyroid cancer. Endocr Relat Cancer. 2007;14(2):405–20. doi: 10.1677/ERC-06-0030.CrossRefPubMedGoogle Scholar
  19. 19.
    Sonoda H, Inoue H, Ogawa K, Utsunomiya T, Masuda TA, Mori M. Significance of skp2 expression in primary breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12(4):1215–20. doi: 10.1158/1078-0432.CCR-05-1709.CrossRefGoogle Scholar
  20. 20.
    Lloyd RV. Molecular pathology of pituitary adenomas. J Neuro-Oncol. 2001;54(2):111–9.CrossRefGoogle Scholar
  21. 21.
    Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010;464(7287):374–9. doi: 10.1038/nature08815.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wei Z, Jiang X, Liu F, Qiao H, Zhou B, Zhai B, et al. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34(1):181–92. doi: 10.1007/s13277-012-0527-8.CrossRefGoogle Scholar
  23. 23.
    Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest. 2007;117(12):3765–73. doi: 10.1172/JCI32538.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Imaki H, Nakayama K, Delehouzee S, Handa H, Kitagawa M, Kamura T, et al. Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res. 2003;63(15):4607–13.PubMedGoogle Scholar
  25. 25.
    Cheng YL, Chang WL, Lee SC, Liu YG, Chen CJ, Lin SZ, et al. Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via inducing cell cycle arrest and apoptosis. Life Sci. 2004;75(13):1579–94. doi: 10.1016/j.lfs.2004.03.009.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen YL, Jian MH, Lin CC, Kang JC, Chen SP, Lin PC, et al. The induction of orphan nuclear receptor nur77 expression by n-butylenephthalide as pharmaceuticals on hepatocellular carcinoma cell therapy. Mol Pharmacol. 2008;74(4):1046–58. doi: 10.1124/mol.107.044800.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu PY, Sheu JJ, Lin PC, Lin CT, Liu YJ, Ho LI, et al. Expression of Nur77 induced by an n-butylidenephthalide derivative promotes apoptosis and inhibits cell growth in oral squamous cell carcinoma. Invest New Drugs. 2012;30(1):79–89. doi: 10.1007/s10637-010-9518-z.CrossRefPubMedGoogle Scholar
  28. 28.
    Carrano AC, Pagano M. Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol. 2001;153(7):1381–90.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci U S A. 2001;98(5):2515–20. doi: 10.1073/pnas.041475098.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25(24):10875–94. doi: 10.1128/MCB.25.24.10875-10894.2005.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Mao-Hsuan Huang
    • 1
  • Shinn-Zong Lin
    • 2
    • 3
    • 4
    • 5
  • Po-Cheng Lin
    • 6
  • Tzyy-Wen Chiou
    • 7
  • Yeu-Wei Harn
    • 8
  • Li-Ing Ho
    • 9
  • Tzu-Min Chan
    • 2
    • 10
  • Chih-Wei Chou
    • 11
  • Chang-Han Chuang
    • 12
  • Hong-Lin Su
    • 1
    • 15
  • Horng-Jyh Harn
    • 13
    • 14
  1. 1.Department of Life Sciences, Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungChina
  2. 2.Center for NeuropsychiatryChina Medical University and HospitalTaichungChina
  3. 3.Department of NeurosurgeryChina Medical University Beigan HospitalYunlinChina
  4. 4.Department of Neurosurgery, Tainan Municipal An-Nan HospitalChina Medical UniversityTainanChina
  5. 5.Graduate Institute of ImmunologyChina Medical UniversityTaichungChina
  6. 6.Department of Research and DevelopmentGwo Xi Stem Cell Applied Technology Co., Ltd.HsinchuChina
  7. 7.Department of Life Science and Graduate Institute of BiotechnologyNational Dong-Hwa UniversityHualienChina
  8. 8.Double Specialty Program of Management and TechnologyNational Tsing Hua UniversityHsinchuChina
  9. 9.Department of Respiratory TherapyVeterans General Hospital—TaipeiTaipeiChina
  10. 10.Everfront Biotech Inc.New Taipei CityChina
  11. 11.Department of CosmeceuticsChina Medical UniversityTaichungChina
  12. 12.Department of OrthopaedicsNational Cheng Kung University HospitalTainanChina
  13. 13.Department of PathologyChina Medical University HospitalTaichungChina
  14. 14.Department of MedicineChina Medical UniversityTaichungChina
  15. 15.Department of Physical TherapyChina Medical UniversityTaichungChina

Personalised recommendations