Advertisement

Tumor Biology

, Volume 35, Issue 5, pp 4867–4873 | Cite as

Circulatory miR-628-5p is downregulated in prostate cancer patients

  • Anvesha Srivastava
  • Helle Goldberger
  • Alexander Dimtchev
  • Catalin Marian
  • Offie Soldin
  • Xin Li
  • Sean P. Collins
  • Simeng Suy
  • Deepak Kumar
Research Article

Abstract

Prostate cancer (PCa) is a major health concern for men in the USA. Aberrant expression of microRNAs (miRNAs) has been associated with the pathogenesis of various cancers, including PCa. Circulatory forms of miRNAs have been detected in serum and hold promise as minimally invasive cancer biomarkers. This study aimed to identify potential circulatory miRNAs that can provide insights into new mechanisms for clinical diagnosis of PCa and can serve as potential biomarkers and/or therapeutic targets. Candidate serum miRNAs were detected by using PCR microarray in a learning set of six African American (AA) and six Caucasian American (CA) PCa patients. Discriminating performance of candidate miRNAs was validated by qRT-PCR in serum samples from 36 AA (24 PCa patients and 12 controls) and 36 CA (16 PCa patients and 20 controls). From the miRNA profiling experiments, three differentially expressed miRNAs (miR-25, miR-101, and miR-628-5p) were selected for future validation. In the validation set, there was an overall low expression of miR-25 (p < 0.01), miR-101 (p < 0.001), and miR-628-5p (p < 0.0001) in serum of PCa patients as compared with normal individuals. Subdivision on the basis of ethnicity showed that serum expression levels of miR-628-5p were significantly downregulated in both AA and CA PCa patients when compared with their respective controls. Our results demonstrate that the three miRNAs, particularly miR-628-5p, may be further developed as a biomarker, which can serve as novel noninvasive biomarker for PCa diagnosis and prognosis.

Keywords

MicroRNA Prostate cancer Serum Circulatory miRNA 

Notes

Acknowledgments

We acknowledge the support of the Genomic and Epigenetic Shared Resource (GESR) and Biostatistics and Bioinformatics Shared Resource (BBSR) at the LCCC. Assistance by Ms. Sunghae Uhm is gratefully acknowledged. Funding support: NIH: CA162264 and CA141935; PCRP: PC111314.

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Yaman Agaoglu F, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of mir-21, mir-141, and mir-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011;32:583–8.CrossRefGoogle Scholar
  3. 3.
    Roberts WW, Bergstralh EJ, Blute ML, Slezak JM, Carducci M, Han M, et al. Contemporary identification of patients at high risk of early prostate cancer recurrence after radical retropubic prostatectomy. Urology. 2001;57:1033–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Shariat SF, Semjonow A, Lilja H, Savage C, Vickers AJ, Bjartell A. Tumor markers in prostate cancer I: blood-based markers. Acta Oncol (Formerly: Acta Radiol Oncol). 2011;50:61.CrossRefGoogle Scholar
  5. 5.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  6. 6.
    Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010;10:297–308.CrossRefPubMedGoogle Scholar
  8. 8.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Wettenhall JM, Smyth GK. Limmagui: a graphical user interface for linear modeling of microarray data. Bioinformatics. 2004;20:3705–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Verhoeven KJF, Simonsen KL, McIntyre LM. Implementing false discovery rate control: increasing your power. Oikos. 2005;108:643–7.CrossRefGoogle Scholar
  12. 12.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Esposito F, Tornincasa M, Pallante P, Federico A, Borbone E, Pierantoni GM, et al. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab. 2012;97:E710–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010;46:2295–303.CrossRefPubMedGoogle Scholar
  15. 15.
    Watson JA, Bryan K, Williams R, Popov S, Vujanic G, Coulomb A, et al. miRNA profiles as a predictor of chemoresponsiveness in Wilms’ tumor blastema. PLoS One. 2013;8:e53417.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, et al. Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3:ra29.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70:9798–807.CrossRefPubMedGoogle Scholar
  18. 18.
    Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 2012;7:e41629.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu Q, Wang C, Lu Z, Guo L, Ge Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta. 2012;413:1058–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y, et al. Serum microRNA profiling and breast cancer risk: the use of mir-484/191 as endogenous controls. Carcinogenesis. 2012;33:828–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011;9:824–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim BH, Hong SW, Kim A, Choi SH, Yoon SO. Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol. 2013;107:505–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu L, Yan W, Rodriguez-Canales J, Rosenberg AM, Hu N, Goldstein AM, et al. MicroRNA analysis of microdissected normal squamous esophageal epithelium and tumor cells. Am J Cancer Res. 2011;1:574–84.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Fang W-K, Liao L-D, Li L-Y, Xie Y-M, Xu X-E, Zhao W-J, et al. Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol. 2013;231:257–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100:1234–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Dacic S, Kelly L, Shuai Y, Nikiforova MN. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol. 2010;23:1577–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, et al. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology. 2012;55:465–75.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27:594–8.PubMedGoogle Scholar
  29. 29.
    Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pang Y, Young CY, Yuan H. MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai). 2010;42:363–9.CrossRefGoogle Scholar
  31. 31.
    Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 2012;72:3091–104.CrossRefPubMedGoogle Scholar
  32. 32.
    Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT, et al. Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila). 2011;4:1073–83.CrossRefGoogle Scholar
  33. 33.
    Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, et al. MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res. 2011;71:2381–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, et al. MicroRNA-101 negatively regulates EZH2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 2010;9:108.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, et al. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res. 2009;315:1439–47.CrossRefPubMedGoogle Scholar
  36. 36.
    Buechner J, Tomte E, Haug BH, Henriksen JR, Lokke C, Flaegstad T, et al. Tumour-suppressor microRNAs let-7 and miR-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer. 2011;105:296–303.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Carvalho J, van Grieken NC, Pereira PM, Sousa S, Tijssen M, Buffart TE, et al. Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. J Pathol. 2012;228:31–44.PubMedGoogle Scholar
  38. 38.
    Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE, et al. Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One. 2011;6:e16282.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ. MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol. 2011;6:671–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Sakurai T, Bilim VN, Ugolkov AV, Yuuki K, Tsukigi M, Motoyama T, et al. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem Biophys Res Commun. 2012;422:607–14.CrossRefPubMedGoogle Scholar
  41. 41.
    Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, et al. microRNA-101 is a potent inhibitor of autophagy. EMBO J. 2011;30:4628–41.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Xu Y, An Y, Wang Y, Zhang C, Zhang H, Huang C, et al. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep. 2013;29:2019–24.PubMedGoogle Scholar
  44. 44.
    Liu X, Zou L, Zhu L, Zhang H, Du C, Li Z, et al. miRNA mediated up-regulation of cochaperone p23 acts as an anti-apoptotic factor in childhood acute lymphoblastic leukemia. Leuk Res. 2012;36:1098–104.CrossRefPubMedGoogle Scholar
  45. 45.
    Strillacci A, Valerii MC, Sansone P, Caggiano C, Sgromo A, Vittori L, et al. Loss of miR-101 expression promotes Wnt/β-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol. 2013;229:379–89.CrossRefPubMedGoogle Scholar
  46. 46.
    Favreau AJ, Sathyanarayana P. miR-590-5p, miR-219-5p, miR-15b and miR-628-5p are commonly regulated by IL-3, GM-CSF and G-CSF in acute myeloid leukemia. Leuk Res. 2012;36:334–41.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Anvesha Srivastava
    • 1
  • Helle Goldberger
    • 1
  • Alexander Dimtchev
    • 1
  • Catalin Marian
    • 2
  • Offie Soldin
    • 3
  • Xin Li
    • 3
  • Sean P. Collins
    • 3
  • Simeng Suy
    • 3
  • Deepak Kumar
    • 1
    • 3
  1. 1.Cancer Research Laboratory, Department of Biology, Chemistry and PhysicsUniversity of the District of ColumbiaWashingtonUSA
  2. 2.Department of BiochemistryVictor Babes University of Medicine and Pharmacy TimisoaraTimisoaraRomania
  3. 3.Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUSA

Personalised recommendations