Advertisement

Tumor Biology

, Volume 35, Issue 5, pp 4779–4784 | Cite as

ChIP-seq predicted estrogen receptor biding sites in human breast cancer cell line MCF7

  • Qi Li
  • Huichun Wang
  • Leyang Yu
  • Jun Zhou
  • Jingde Chen
  • Xia Zhang
  • Lin Chen
  • Yong Gao
  • Qun Li
Research Article

Abstract

The aim of this study was to find estrogen receptor (ER) binding sites of estradiol (E2)-treated and control groups and discuss the roles of ER activation in the tumorigenesis and progression of various human cancers. The ER ChIP-seq data GSE19013 was downloaded from Gene Expression Omnibus database, including E2-treated data GSM470419 and control data GSM470418. MACS software was utilized to identify ER binding sites in two groups. R’s ChIPpeakAnno was used to detect ER-regulated target genes. Motif finding was employed to analyze ER concordant transcription factors (TFs) in MCF7 cell. The Gene Ontology (GO) was used to conduct functional enrichment analysis. We identified 9,134 ER binding sites in E2 stimulation group and 1,969 in control group. GO enrichment analysis of target genes showed that ER-regulated target genes mainly participated in mRNA catabolic process, protein complex disassembly, and protein localization to organelle-related biology process; while in E2 stimulation group, the function of ER-regulated target genes sharply changed. The effect of E2 in MCF7 cell suggested that activated ER probably reacted with several TFs and then co-regulated related genes expression. Furthermore, several TFs, such as PAX6, SMAD3, and ESR2, had multiply cellular regulation function. Our results showed that E2 stimulates breast cancer cell growth through ER. This may infer the function of ER in occurrence and development of breast cancer. Together, our study would pave ways for discussing ER concordant TFs and studying other ER-recruited TFs.

Keywords

Breast cancer Estrogen receptor Estradiol stimulation ChIP-seq 

Notes

Acknowledgments

This work was supported by grant PKJ2012-Y11 from the Science and Technology Development Foundation from Pudong New District, Shanghai, People’s Republic of China and by grant PWRq2011-16 from the Outstanding Young Foundation from Pudong New District, Shanghai, People’s Republic of China.

References

  1. 1.
    DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61(6):408–18.CrossRefGoogle Scholar
  2. 2.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2(2):101–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem. 2001;276(40):36869–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Bai Z, Gust R. Breast cancer, estrogen receptor and ligands. Arch Pharm. 2009;342(3):133–49.CrossRefGoogle Scholar
  7. 7.
    Beato M, Herrlich P, Sch¨¹tz G. Steroid hormone receptors: many actors in search of a plot. Cell. 1995;83(6):851–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Katzenellenbogen BS, Montano MM, Ediger TR, Sun J, Ekena K, Lazennec G, et al. Estrogen receptors: selective ligands, partners, and distinctive pharmacology. Recent Prog Horm Res. 1999;55:163–93. discussion 94–5.Google Scholar
  9. 9.
    Grober OM, Mutarelli M, Giurato G, Ravo M, Cicatiello L, De Filippo MR, et al. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics. 2011;12(1):36.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cavailles V, Dauvois S, L’Horset F, Lopez G, Hoare S, Kushner PJ, et al. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 1995;14(15):3741.PubMedPubMedCentralGoogle Scholar
  11. 11.
    He X, Zheng Z, Song T, Wei C, Ma H, Ma Q, et al. C-Abl regulates estrogen receptor α transcription activity through its stabilization by phosphorylation. Oncogene. 2010;29(15):2238–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2010;43(1):27–33.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Johnson KN, Zaveri N, Gupta K. Interaction of naloxone and estrogen receptor in breast cancer. Morphine and Metastasis. Springer; 2013. p. 15–29.Google Scholar
  14. 14.
    Welboren W-J, van Driel MA, Janssen-Megens EM, van Heeringen SJ, Sweep FC, Span PN, et al. ChIP-Seq of ER¦Á and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 2009;28(10):1418–28.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hu M, Yu J, Taylor JM, Chinnaiyan AM, Qin ZS. On the detection and refinement of transcription factor binding sites using ChIP-Seq data. Nucleic Acids Res. 2010;38(7):2154–67.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Routh A, Johnson JE. Discovery of functional genomic motifs in viruses with ViReMa–a Virus Recombination Mapper–for analysis of next-generation sequencing data. Nucleic Acids Res. 2013; gkt916.Google Scholar
  17. 17.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tarazona S, Garc¨ªa-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Abbas MM, Abouelhoda M, Bahig HM. A hybrid method for the exact planted (l, d) motif finding problem and its parallelization. BMC Bioinforma. 2012;13 Suppl 17:S10.CrossRefGoogle Scholar
  21. 21.
    Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116(3):561–70.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McKenna NJ, O’Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108(4):465–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23(8):1616–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Jordan VC, O’Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol. 2007;25(36):5815–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Burns KA, Li Y, Arao Y, Petrovich RM, Korach KS. Selective mutations in estrogen receptor α D-domain alters nuclear translocation and non-estrogen response element gene regulatory mechanisms. J Biol Chem. 2011;286(14):12640–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Robinson-Rechavi M, Garcia HE, Laudet V. The nuclear receptor superfamily. J Cell Sci. 2003;116(4):585–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Oviedo PJ, Sobrino A, Laguna-Fernandez A, Novella S, Tar¨ªn JJ, Garc¨ªa-P¨¦rez M-A, et al. Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced RhoA/ROCK pathway. Mol Cell Endocrinol. 2011;335(2):96–103.CrossRefPubMedGoogle Scholar
  29. 29.
    La Rosa P, Acconcia F. Signaling functions of ubiquitin in the 17β-estradiol (E2): estrogen receptor (ER) α network. J Steroid Biochem. 2011;127(3):223–30.CrossRefGoogle Scholar
  30. 30.
    Zong XY, Yu Y, Ling ZQ, Meng XL. Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis. Biochem Mol Biol Rep. 2011;44(9):595–600.Google Scholar
  31. 31.
    Moelans CB, Verschuur©\Maes AH, van Diest PJ. Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol. 2011;225(2):222–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Matsuzaki K, Kitano C, Murata M, Sekimoto G, Yoshida K, Uemura Y, et al. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-β signal in later stages of human colorectal cancer. Cancer Res. 2009;69(13):5321–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu F. Inhibition of Smad3 activity by cyclin D-CDK4 and cyclin E-CDK2 in breast cancer cells. Cell Cycle. 2011;10(2):191.CrossRefGoogle Scholar
  34. 34.
    Kim R-J, Kim S-R, Roh K-J, Park S-B, Park J-R, Kang K-S, et al. Ras activation contributes to the maintenance and expansion of Sca-1pos cells in a mouse model of breast cancer. Cancer Lett. 2010;287(2):172–81.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of OncologyEast Hospital, Tongji University School of MedicineShanghaiChina
  2. 2.Department of General SurgeryThe Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
  3. 3.Department of Clinical LaboratoryZhuhai People’s HospitalZhuhaiChina
  4. 4.Department of Oncology, East HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations