Tumor Biology

, Volume 35, Issue 5, pp 4551–4559 | Cite as

Relationship of immunohistochemical biomarker expression and lymph node involvement in patients undergoing surgical treatment of NSCLC with long-term follow-up

  • Ana María Gómez
  • Jose Ramón Jarabo Sarceda
  • Jose Antonio L. García-Asenjo
  • Cristina Fernandez
  • Susana Hernandez
  • Julian Sanz
  • Elena Fernandez
  • Joaquin Calatayud
  • Antonio Torres
  • Florentino Hernando
Research Article


We try to identify the relationship between immunohistochemical marker expression and lymph node involvement in a cohort of 282 patients followed for 5 years after curative resection for NSCLC. In 189 patients (67 %), lymph nodes were unaffected while 93 patients (33 %) showed nodal involvement. The expression of 15 molecular markers was determined from each patient by tissue-array immunohistochemistry. Univariate analysis indicated significantly higher expression of E-cadherin, γ-catenin, p27, and p53 in patients with lymph node involvement. In those with unaffected nodes, p16 and Rb were expressed. E-cadherin expression was related to a 50 % mortality reduction in patients with node involvement (hazard ratio (HR) 0.5; p = 0.017). c-erbB-2 expression was correlated with a 3.4-fold increase in mortality compared to patients without expression of this marker in subjects without node involvement (HR 3.41; p = 0.017). Multivariate analysis identified c-erbB-2 (HR 2.22; p = 0.089) and p27 (HR 1.44; p = 0.019) as prognostics of mortality while Rb (HR 0.74) indicated a good prognosis. The expression of proteins encoded by oncogenes and tumor suppressor genes was different according to lymph node involvement. The increased mortality related to c-erbB-2 expression in patients with unaffected lymph nodes would suggests a need for adjuvant treatment.


Non-small cell lung cancer Gene expression Lymph nodes Tissue array Prognosis c-erb-2 


Funding source

Fundación Mutua Madrileña.

Conflicts of interest



  1. 1.
    Grossi F, Spizzo R, Bordo D, et al. Prognostic stratification of stage IIIA pN2 non-small cell lung cancer by hierarchical clustering analysis of tissue microarray immunostaining data. J Thorac Oncol. 2010;5:1354–60.CrossRefPubMedGoogle Scholar
  2. 2.
    Yokoi S, Yasui K, Mori M, et al. Amplification and overexpression of skp2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am J Pathol. 2004;165:175–80.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Moriya Y, Iyoda A, Kasai Y, et al. Prediction of lymph node metastasis by gene expression profiling in patients with primary resected lung cancer. Lung Cancer. 2009;64:86–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Brambilla C, Fievet F, Jeanmart M, et al. Early detection of lung cancer: role of biomarkers. Eur Respir J. 2003;21(Suppl39):36s–44.CrossRefGoogle Scholar
  5. 5.
    Grupo de Trabajo de la SEPAR Normativa actualizada. Sobre diagnóstico y estadificación del carcinoma broncogénico. Arch Bronconeumol. 1998;34:437–52.CrossRefGoogle Scholar
  6. 6.
    Rami-Porta R, Mateu-Navarro M, Freixinet J, et al. Type of resection and prognosis in lung cancer. Experience of a multicentre study. Eur J Cardiothorac Surg. 2005;28:622–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Fernández E. Estudios epidemiologicos (STROBE). Med Clin (Barc). 2005;125:43–8.CrossRefGoogle Scholar
  8. 8.
    Bria E, Milella M, Sperduti I, et al. A novel clinical prognostic score incorporating the number of resected lymph-nodes to predict recurrence and survival in non-small-cell lung cancer. Lung Cancer. 2009;66:365–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee JG, Lee CY, Park IK, et al. Number of metastatic lymph nodes in resected non-small cell lung cancer predicts patient survival. Ann Thorac Surg. 2008;85:211–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Lardinois D, Suter H, Hakki H, et al. Morbidity, survival, and site of recurrence after mediastinal lymph-node dissection versus systematic sampling after complete resection for non-small cell lung cancer. Ann Thorac Surg. 2005;80:268–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Bollen E, Van Duin CJ, Theunissen PHMH, et al. Mediastinal lymph node dissection in resected lung cancer: morbidity and accuracy of staging. Ann Thorac Surg. 1993;55:961–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Singhal S, Vachani A, Antin-Ozerkis D, et al. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res. 2005;11:3974–86.CrossRefPubMedGoogle Scholar
  13. 13.
    Baldi A, Esposito V, De Luca A, et al. Differential expression of the retinoblastoma gene family members pRb/p105, p107, and pRb2/p130 in lung cancer. Clin Cancer Res. 1996;2:1239–45.PubMedGoogle Scholar
  14. 14.
    Caputi M, Groeger AM, Esposito V, et al. Loss of pRb2/p130 expression is associated with unfavorable clinical outcome in lung cancer. Clin Cancer Res. 2002;8:3850–6.PubMedGoogle Scholar
  15. 15.
    Catzavelos C, Tsao MS, DeBoer G, et al. Reduced expression of the cell cycle inhibitor p27Kip1 in non-small cell lung carcinoma: a prognostic factor independent of Ras. Cancer Res. 1999;59:684–8.PubMedGoogle Scholar
  16. 16.
    Cheng YL, Lee SC, Harn H-J, et al. Prognostic prediction of the immunohistochemical expression of p53 and p16 in resected non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;23:221–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Esposito V, Baldi A, Vincenzi B, et al. Analysis of cell cycle regulator proteins in non-small cell lung cancer. J Clin Pathol. 2004;57:58–63.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hayashi H, Ogawa N, Ishiwa N, et al. High cyclin E and low p27/Kip1 expressions are potentially poor prognostic factors in lung adenocarcinoma patients. Lung Cancer. 2001;34:59–65.CrossRefPubMedGoogle Scholar
  19. 19.
    Kawasaki M, Nakanishi Y, Kuwano K, et al. The utility of p53 immunostaining of transbronchial biopsy specimens of lung cancer: p53 overexpression predicts poor prognosis and chemoresistance in advanced non-small cell lung cancer. Clin Cancer Res. 1997;3:1195–200.PubMedGoogle Scholar
  20. 20.
    Sanchez PA, Torres AJ, Iniesta P, et al. Prognostic significance of p53 gene mutations in squamous cell carcinoma of the lung. Oncol R. 1998;5:1129–33.Google Scholar
  21. 21.
    Tong J, Sun X, Cheng H, et al. Expression of p16 in non-small cell lung cancer and its prognostic significance: a meta-analysis of published literatures Review Article. Lung Cancer. 2011;74:155–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Gorgoulis VG, Zacharatos P, Kotsinas A, et al. Alterations of the p16-pRb pathway and the chromosome locus 9p21–22 in non-small-cell lung carcinomas: relationship with p53 and MDM2 protein expression. Am J Pathol. 1998;153:1749–65.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Baldi A, De Luca A, Esposito V. et al. Tumor suppressors and cell-cycle proteins in lung cancer. Review article. Pathology Research International 2011;1-12Google Scholar
  24. 24.
    Esposito V, Baldi A, DeLuca A, et al. Prognostic role of the cyclin-dependent kinase Inhibitor p27 in non-small cell lung cancer. Cancer Res. 1997;57:3381–5.PubMedGoogle Scholar
  25. 25.
    Kaye FJ. RB and cyclin dependent kinase pathways: defining a distinction between RB and p16 loss in lung cancer. Oncogene. 2002;21:6908–14.CrossRefPubMedGoogle Scholar
  26. 26.
    Lloyd RV, Erickson LA, Jin L, et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol. 1999;154:313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schneider PM, Praeuer HW, Stoeltzing O, et al. Multiple molecular marker testing (p53, C-Ki-ras, c-erbB-2) improves estimation of prognosis in potentially curative resected non-small cell lung cancer. Br J Cancer. 2000;83:473–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Grob TJ, Kannengiesser I, Tsourlakis MC, et al. Heterogeneity of ERBB2 amplification in adenocarcinoma, squamous cell carcinoma and large cell undifferentiated carcinoma of the lung. Mod Pathol. 2012;25(12):1566–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Cantero R, Torres AJ, Maestro ML, et al. Pronostic value of the quantified expression of p185 in non-small cell lung cancer. J Thorac Cardiovasc Surg. 2000;119:1119–25.CrossRefPubMedGoogle Scholar
  30. 30.
    Díez M, Pollan M, Maestro M, et al. Prediction of recurrence by quantification of p185 protein in non-small cell lung cancer tissue. Br J Cancer. 1997;75:684–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shi D, He G, Cao S, et al. Overexpression of the c-erbB-2/neu–encoded p185 protein in primary lung cancer. Mol Carcinog. 1992;5:213–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Micke P, Basrai M, Faldum A, et al. Characterization of c-kit expression in small cell lung cancer: prognostic and therapeutic implications. Clin Cancer Res. 2003;9:188–94.PubMedGoogle Scholar
  33. 33.
    Meert AP, Martin B, Delmotte P, et al. The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J. 2002;20:975–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Gosney JR, Field JK, Gosney MA, et al. c-myc oncoprotein in bronchial carcinoma: expression in all major morphological types. Anticancer Res. 1990;10:623–8.PubMedGoogle Scholar
  35. 35.
    Barr LF, Campbell SE, Diette GB. c-Myc Suppresses the tumorigenicity of lung cancer cells and down-regulates vascular endothelial growth factor expression. Cancer Res. 2000;60:143–9.PubMedGoogle Scholar
  36. 36.
    Liu D, Huang C, Kameyama K, et al. E-cadherin expression associated with differentiation and prognosis in patients with non-small cell lung cancer. Ann Thorac Surg. 2001;71:949–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Böhm J, Niskanen L, Kiraly K, et al. Expression and prognostic value of α-, β-, and γ-catenins in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2000;85:4806–11.PubMedGoogle Scholar
  38. 38.
    Choi YS, Shim YM, Kim SH, et al. Prognostic significance of E-cadherin and ß-catenin in resected stage I non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;24:441–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Kase S, Sugio K, Yamazaki K, et al. Expression of E-cadherin and b-catenin in human non-small cell lung cancer and the clinical significance. Clin Cancer Res. 2000;6:4789–96.PubMedGoogle Scholar
  40. 40.
    Kimura K, Endo Y, Yonemyra Y, et al. Clinical significance of S100A4 and E-cadherin-related adhesion molecules in non-small cell lung cancer. Int J Oncol. 2000;16:1125–31.PubMedGoogle Scholar
  41. 41.
    Nozawa N, Hashimoto S, Nakashima Y, et al. Immunohistochemical α- and β-catenin and E-cadherin expression and their clinicopathological significance in human lung adenocarcinoma. Pathol-Res Pract. 2006;202:639–50.CrossRefPubMedGoogle Scholar
  42. 42.
    Bröker LE, Huisman C, Span SW, et al. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res. 2004;64:27–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Esposito V, Baldi A, De Luca A, et al. Cell cycle related proteins as prognostic parameters in radically resected non-small cell lung cancer. J Clin Pathol. 2005;58:734–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hommura F, Dosaka-Akita H, Kinoshita I, et al. Predictive value of expression of p16INK4A, retinoblastoma and p53 proteins for the prognosis of non-small-cell lung cancers. Br J Cancer. 1999;81:696–701.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Takada M, Tada M, Tamoto E, et al. Prediction of lymph node metastasis by analysis of gene expression profiles in non-small cell lung cancer. J Surg Res. 2004;122:61–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Donnem T, Lonvik K, Eklo K, et al. Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer: coexpression with vascular endothelial growth factor-A predicts poor survival.n2011;117:3193-3200Google Scholar
  47. 47.
    Zhu CQ, Shih W, Ling C-H, et al. Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation. J Clin Pathol. 2006;59:790–800.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bremnes RM, Veve R, Gabrielson E, et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. JCO. 2002;20:2417–28.CrossRefGoogle Scholar
  49. 49.
    Sulzer MA, Leers MPG, van Noord JA, et al. Reduced E-cadherin expression is associated with increased lymph node metastasis and unfavorable prognosis in nonsmall cell lung cancer. Am J Respir Crit Care Med. 1998;157:1319–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Ucvet A, Kul C, Gursoy S, et al. Valor pronóstico del receptor del factor de crecimiento epitelial, factor de crecimiento endotelial vascular, E-cadherina, y p120 catenina en el carcinoma de pulmón no microcítico resecado. Arch Bronconeumol. 2011;47:397–402.CrossRefPubMedGoogle Scholar
  51. 51.
    Nakashima T, Huang C, Liu D, et al. Neural-cadherin expression associated with angiogenesis in non-small-cell lung cancer patients. Br J Cancer. 2003;88:1727–33.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mohamed S, Yasufuku K, Hiroshima K, et al. Prognostic implications of cell cycle-related proteins in primary resectable pathologic N2 non-small cell lung cancer. Cancer. 2007;109:2506–14.CrossRefPubMedGoogle Scholar
  53. 53.
    Sterlacci W, Tzankov A, Veits L, et al. A comprehensive analysis of p16 expression, gene status, and promoter hypermethylation in surgically resected non-small cell lung carcinomas. J Thorac Oncol. 2011;6:1649–57.CrossRefPubMedGoogle Scholar
  54. 54.
    Sion-Vardy N, Freedman J, Lazarov I, et al. p27kip1 expression in non-small cell lung cancer is not an independent prognostic factor. Anticancer Res. 2010;30:3699–704.PubMedGoogle Scholar
  55. 55.
    Cheng YL, Lee SC, Harn HJ, et al. Prognostic prediction of the immunohistochemical expression of p53 and p16 in resected non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;23:221–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Esposito V, Deluca A, Baldi A, et al. Altered expression of p53 and Rb tumor suppressor genes in lung cancer: relationship with survival. Int J Oncol. 1996;9:439–43.PubMedGoogle Scholar
  57. 57.
    Au NH, Cheang M, Huntsman DG, et al. Evaluation of immunohistochemical markers in non-small cell lung cancer by unsupervised hierarchical clustering analysis: a tissue microarray study of 284 cases and 18 markers. J Pathol. 2004;204:101–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ana María Gómez
    • 1
  • Jose Ramón Jarabo Sarceda
    • 1
  • Jose Antonio L. García-Asenjo
    • 2
  • Cristina Fernandez
    • 3
  • Susana Hernandez
    • 4
  • Julian Sanz
    • 4
  • Elena Fernandez
    • 1
  • Joaquin Calatayud
    • 5
  • Antonio Torres
    • 6
  • Florentino Hernando
    • 1
  1. 1.Thoracic Surgery Department, Hospital Clínico San CarlosInstituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
  2. 2.Department of PathologyHospital Universitario Príncipe de AsturiasAlcalá de HenaresSpain
  3. 3.Department of Epidemiology, Hospital Clínico San CarlosInstituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
  4. 4.Department of Pathology, Hospital Clínico San CarlosInstituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
  5. 5.Thoracic Surgery Department, Hospital Clínico San CarlosInstituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
  6. 6.General Surgery Department, Hospital Clínico San CarlosInstituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain

Personalised recommendations