Advertisement

Tumor Biology

, Volume 35, Issue 5, pp 4047–4056 | Cite as

Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease

  • Riadh Ben Gacem
  • Olfa Ben Abdelkrim
  • Sonia Ziadi
  • Myriam Ben Dhiab
  • Mounir Trimeche
Research Article

Abstract

Aberrant DNA methylation on CpG islands is one of the most consistent epigenetic changes in human cancers, and the process of methylation is catalyzed by the DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. Recent reports demonstrate that deregulation of miR-124a, one of the frequently methylated microRNAs in human cancers, is related to carcinogenesis. The aim of this study was to evaluate the frequencies of methylation of the three genomic loci encoding the miR-124a in primary breast cancers and to investigate their relationships with the clinicopathological characteristics of the tumors and with the expression levels of DNMT1, DNMT3a, and DNMT3b. The methylation status of the three genomic loci encoding the miR-124a (miR-124a-1, miR-124a-2, and miR-124a-3) was analyzed in fresh-frozen tumor samples using methylation-specific PCR in a large series of invasive breast ductal carcinomas (n = 60). Results were correlated to several clinicopathological characteristics of the tumors and to the expression levels of DNMT1, DNMT3a, and DNMT3b, determined by immunohistochemistry. Promoter hypermethylation of miR-124a-1, miR-124a-2, and miR-124a-3 was detected in 53.3, 70, and 36.7 % of cases, respectively. Methylation of miR-124a-2 correlated to patients with age higher than 45 years (P = 0.008) and to postmenopausal patients (P = 0.03), whereas methylation of miR-124a-3 correlated significantly to tumor size >20 mm (P = 0.03). Interestingly, simultaneous methylation of the three genes encoding miR-124a correlated significantly with the presence of lymph node metastasis (P = 0.01) and high mitotic score (P = 0.03). No significant correlation was found between promoter hypermethylation of miR-124a and expression of hormone receptors or HER2/neu. With regard to DNMT expression, no correlation was found between DNMT1 or DNMT3a expression and promoter methylation of any tested microRNA. However, DNMT3b overexpression correlates significantly with the hypermethylation of miR-124a-3 (P = 0.03). Our data indicates that miR-124a-1, miR-124a-2, and miR-124a-3 genes are frequently methylated in breast cancer and play a role in tumor growth and aggressivity.

Keywords

microRNA Methylation Breast cancer 

Notes

Acknowledgments

This work was supported by the “Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et Technologie” and the “Ministère de la Santé” of Tunisia.

Conflicts of interest

None

Supplementary material

13277_2013_1530_MOESM1_ESM.doc (46 kb)
Supplementary Table1 Association between DNMT1, -3a, and -3b overexpressions and miR-124a promoter hypermethylation (DOC 46 kb)

References

  1. 1.
    Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21:5427–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Bestor TH, Verdine GL. DNA methyltransferases. Curr Opin Cell Biol. 1994;6:380–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000;25:338–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.CrossRefPubMedGoogle Scholar
  5. 5.
    Ding WJ, Fang JY, Chen XY, Peng YS. The expression and clinical significance of DNA methyltransferase proteins in human gastric cancer. Dig Dis Sci. 2008;53:2083–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Garzon R, Fabbri M, Cimmino A, Calin GA, Croce C. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Esquela-Kerscher A, Slack FJ. OncomiRs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMedGoogle Scholar
  9. 9.
    Hammond SM. MicroRNAs as tumor suppressors. Nat Genet. 2007;39:582–3.CrossRefPubMedGoogle Scholar
  10. 10.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BCM Med. 2008;6:14–31.Google Scholar
  11. 11.
    Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M, et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer. 2009;124(10):2367–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 2010;9:167–81.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.CrossRefPubMedGoogle Scholar
  15. 15.
    Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Wong KY, So CC, Loong F, Chung LP, Lam WW, Liang R, et al. Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One. 2011;6(4):e19027.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen X, He D, Dong XD, Dong F, Wang J, Wang L, et al. MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma. Invest Ophthalmol Vis Sci. 2013;54:2248–56.CrossRefPubMedGoogle Scholar
  18. 18.
    Lv XB, Jiao Y, Qing Y, Hu H, Cui X, Lin T, et al. MiR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. Chin J Cancer. 2011;30(12):821–30.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liang YJ, Wang QY, Zhou CX, Yin QQ, He M, Yu XT, et al. MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis. 2013;34(3):713–22.CrossRefPubMedGoogle Scholar
  20. 20.
    Deng G, Kakar S, Kim YS. MicroRNA-124a and microRNA-34b/c are frequently methylated in all histological types of colorectal cancer and polyps, and in the adjacent normal mucosa. Oncol Lett. 2011;2(1):175–80.PubMedGoogle Scholar
  21. 21.
    Elston CW, Ellis IO, Goulging H, Pindre SE. Role of pathology in the prognosis and management of breast cancer. In: Elston CW, Ellis IO, editors. Systemic pathology, vol. 13. 3rd ed. Edinburgh: Churchill Livingstone; 1998. p. 385–433.Google Scholar
  22. 22.
    Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14:1368–76.CrossRefPubMedGoogle Scholar
  23. 23.
    Hachana M, Trimeche M, Ziadi S, Amara K, Korbi S. Evidence for a role of the Simian Virus 40 in human breast carcinomas. Breast Cancer Res Treat. 2009;113:43–58.CrossRefPubMedGoogle Scholar
  24. 24.
    Ben Gacem R, Hachana M, Ziadi S, Amara K, Ksia F, Mokni M, et al. Contribution of epigenetic alteration of BRCA1 and BRCA2 genes in breast carcinomas in Tunisian patients. Cancer Epidemiol. 2012;36:190–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singal R, Ferdinand L, Reis IM, Schlesselman JJ. Methylation of multiple genes in prostate cancer and the relationship with clinicopathological features of disease. Oncol Rep. 2004;12:631–7.PubMedGoogle Scholar
  27. 27.
    Ben Gacem R, Hachana M, Ziadi S, Ben Abdelkarim S, Hidar S, Trimeche M. Clinicopathologic significance of DNA methyltransferase 1, 3a, and 3b overexpression in Tunisian breast cancers. Hum Pathol. 2012;43:1731–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Choi MS, Shim YH, Hwa JY, Lee SK, Ro JY, Kim JS, et al. Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Hum Pathol. 2003;34:11–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Grossel MJ, Hinds PW. Beyond the cell cycle: a new role for Cdk6 in differentiation. J Cell Biochem. 2006;97:485–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Peurala H, Greco D, Heikkinen T, Kaur S, Bartkova J, Jamshidi M, et al. MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer. PLoS One. 2011;6:e26122.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, Loffredo CA, et al. MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS One. 2012;7(6):e39011.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Turek-Plewa J, Jagodziński PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005;10(4):631–47.PubMedGoogle Scholar
  33. 33.
    Roll JD, Rivenbark AG, Jones WD, Coleman WB. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer. 2008;7:15.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat. 2010;120:581–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5:3–13.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Riadh Ben Gacem
    • 1
  • Olfa Ben Abdelkrim
    • 1
  • Sonia Ziadi
    • 1
  • Myriam Ben Dhiab
    • 1
  • Mounir Trimeche
    • 1
  1. 1.Department of PathologyFarhat-Hached HospitalSousseTunisia

Personalised recommendations