Advertisement

Tumor Biology

, Volume 35, Issue 4, pp 3861–3865 | Cite as

Association between a functional insertion/deletion polymorphism in IL1A gene and risk of papillary thyroid carcinoma

  • Linbo Gao
  • Xinxin Zhu
  • Zhihui Li
  • Lijuan Li
  • Tao Wang
  • Huaizhong Hu
  • Wanli Guo
  • Peng Chen
  • Jingqiang Zhu
  • Lin Zhang
Research Article

Abstract

The aim of this study was to evaluate whether an insertion/deletion polymorphism (rs3783553) locating in the miR-122 target gene IL1A 3′ untranslated region was related to the risk of papillary thyroid carcinoma (PTC). Genomic DNA was extracted from peripheral venous blood of 273 patients with PTC and 509 controls. The IL1A rs3783553 polymorphism was genotyped by using a polymerase chain reaction assay. No significant difference of the distribution of the IL1A rs3783553 polymorphism was observed between PTC patients and controls. However, patients carrying the IL1A rs3783553 ins/ins genotype and ins allele had significantly decreased risks for developing T3 and T4 when compared with patients carrying the IL1A rs3783553 del/del genotype and del allele (ins/ins vs. del/del: OR = 0.22, 95 % confidence interval (CI), 0.09–0.54; ins vs. del: OR = 0.58, 95 % CI, 0.41–0.83, respectively). These results suggest that the rs3783553 polymorphism may be used as a genetic marker to predict the size/extension of PTC.

Keywords

miRNA Polymorphism IL1A Insertion/deletion Papillary thyroid carcinoma 

Notes

Acknowledgments

This work was supported by grants from the Special Research Foundation of Doctoral Priority to the Development of Field Project (no. 20110181130013), National Natural Science Foundation of China (no. 81302149), Distinguished Young Scientist of Sichuan University (no. 2013SCU04A38), the Science & Technology Pillar Program of Sichuan Province (14ZC1838), and the Ph.D. Programs Foundation of Ministry of Education of China (no. 20130181120011).

Conflicts of interest

None

References

  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115(16):3801–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA. 2006;295(18):2164–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Sakorafas GH, Giotakis J, Stafyla V. Papillary thyroid microcarcinoma: a surgical perspective. Cancer Treat Rev. 2005;31(6):423–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3′ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis. 2009;30(12):2064–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20):7269–74.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68(20):8535–40.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Landi D, Moreno V, Guino E, Vodicka P, Pardini B, Naccarati A, et al. Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat Res. 2011;717(1–2):109–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29(3):579–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Li ZH, Pan X, Han BW, Guo XM, Zhang Z, Jia J, et al. A let-7 binding site polymorphism rs712 in the KRAS 3′ UTR is associated with an increased risk of gastric cancer. Tumour Biol. 2013;34(5):3159–63.Google Scholar
  12. 12.
    Yang ZH, Dai Q, Zhong L, Zhang X, Guo QX, Li SN. Association of IL-1 polymorphisms and IL-1 serum levels with susceptibility to nasopharyngeal carcinoma. Mol Carcinog. 2011;50(3):208–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Zeng XF, Li J, Li SB. A functional polymorphism in IL-1A gene is associated with a reduced risk of gastric cancer. Tumour Biol. 2013;35(1):265–268Google Scholar
  14. 14.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.PubMedCrossRefGoogle Scholar
  15. 15.
    Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, et al. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci U S A. 2009;106(5):1502–5.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chang J, Guo JT, Jiang D, Guo H, Taylor JM, Block TM. Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol. 2008;82(16):8215–23.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Reddi HV, Madde P, Milosevic D, Hackbarth JS, Algeciras-Schimnich A, McIver B, et al. The putative PAX8/PPARgamma fusion oncoprotein exhibits partial tumor suppressor activity through up-regulation of micro-RNA-122 and dominant-negative PPARgamma activity. Genes Cancer. 2011;2(1):46–55.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Reddi HV, Driscoll CB, Madde P, Milosevic D, Hurley RM, McDonough SJ, et al. Redifferentiation and induction of tumor suppressors miR-122 and miR-375 by the PAX8/PPARgamma fusion protein inhibits anaplastic thyroid cancer: a novel therapeutic strategy. Cancer Gene Ther. 2013;20(5):267–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72(11):1605–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Apte RN, Voronov E. Is interleukin-1 a good or bad ‘guy’ in tumor immunobiology and immunotherapy? Immunol Rev. 2008;222(1):222–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Kimura H, Yamashita S, Namba H, Tominaga T, Tsuruta M, Yokoyama N, et al. Interleukin-1 inhibits human thyroid carcinoma cell growth. J Clin Endocrinol Metab. 1992;75(2):596–602.PubMedGoogle Scholar
  23. 23.
    Kammoun-Krichen M, Bougacha-Elleuch N, Mnif M, Bougacha F, Charffedine I, Rebuffat S, et al. IL-1beta a potential factor for discriminating between thyroid carcinoma and atrophic thyroiditis. Eur Cytokine Netw. 2012;23(3):101–6.PubMedGoogle Scholar
  24. 24.
    Zeki K, Nakano Y, Inokuchi N, Watanabe K, Morimoto I, Yamashita U, et al. Autocrine stimulation of interleukin-1 in the growth of human thyroid carcinoma cell line NIM 1. J Clin Endocrinol Metab. 1993;76(1):127–33.PubMedGoogle Scholar
  25. 25.
    Zeki K, Morimoto I, Arao T, Eto S, Yamashita U. Interleukin-1alpha regulates G1 cell cycle progression and arrest in thyroid carcinoma cell lines NIM1 and NPA. J Endocrinol. 1999;160(1):67–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Inokuchi N, Zeki K, Morimoto I, Nakano Y, Fujihira T, Yamashita U, et al. Stimulatory effect of interleukin-1 alpha on proliferation through a Ca2+/calmodulin-dependent pathway of a human thyroid carcinoma cell line, NIM 1. Jpn J Cancer Res. 1995;86(7):670–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang HT. Int7G24A variant of the TGFBR1 gene and cancer risk: a meta-analysis of three case-control studies. Lung Cancer. 2005;49(3):419–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Lu D, Chen L, Shi X, Zhang X, Ling X, Chen X, et al. A functional polymorphism in interleukin-1alpha (IL1A) gene is associated with risk of alopecia areata in Chinese populations. Gene. 2013;521(2):282–6.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Linbo Gao
    • 1
    • 2
  • Xinxin Zhu
    • 3
  • Zhihui Li
    • 3
  • Lijuan Li
    • 1
    • 4
  • Tao Wang
    • 1
    • 2
  • Huaizhong Hu
    • 1
    • 2
  • Wanli Guo
    • 1
    • 2
  • Peng Chen
    • 4
  • Jingqiang Zhu
    • 3
  • Lin Zhang
    • 1
    • 2
  1. 1.Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children’s Health, West China Second University HospitalSichuan UniversityChengduPeople’s Republic of China
  2. 2.Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationChengduPeople’s Republic of China
  3. 3.Department of Thyroid and Breast Surgery, West China HospitalSichuan UniversityChengduPeople’s Republic of China
  4. 4.Department of Forensic Biology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations