Advertisement

Tumor Biology

, Volume 35, Issue 4, pp 2857–2869 | Cite as

The microRNA networks of TGFβ signaling in cancer

  • V. P. Sivadas
  • S. Kannan
Review

Abstract

In metazoans, the transforming growth factor β (TGFβ) signaling regulates a host of activities ranging from embryonic development to tissue homeostasis. The normal as well as tumor cells respond to this cytokine signaling pathway in a highly context-dependent manner. It acts as a potent tumor suppressor initially by inducing cell cycle arrest and apoptosis. But advanced tumors often misuse TGFβ signaling for tumor progression by selectively disabling the tumor suppressor arm and using other properties of TGFβ signaling such as induction of angiogenesis, epithelial to mesenchymal transition, and metastases. This dual role of TGFβ in cancer remained a mystery until recently. But recent advances in the field of microRNA provided a deeper understanding about this dual nature of TGFβ signaling in cancers. In the present review, we present an account of the role of microRNAs in deregulating TGFβ signaling and modulating cancer cell behavior during tumor initiation and cancer progression. This review also includes a discussion on the recent advances in the deregulation of TGFβ signaling in carcinogenesis.

Keywords

TGFβ-SMAD signaling MicroRNA Cancer Angiogenesis Epithelial to mesenchymal transition Metastases 

Notes

Acknowledgments

The present study was financially supported by the Department of Biotechnology (DBT), Government of India. Sivadas is a recipient of Senior Research Fellowship of the University Grants Commission (UGC), Government of India.

Conflicts of Interest

None

References

  1. 1.
    Seoane J. Escaping from the TGFbeta anti-proliferative control. Carcinogenesis. 2005;27(11):2148–56.Google Scholar
  2. 2.
    Massagué J. TGFbeta in cancer. Cell. 2008;134:215–30.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.PubMedGoogle Scholar
  4. 4.
    Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–810.PubMedGoogle Scholar
  5. 5.
    Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–93.PubMedGoogle Scholar
  6. 6.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.PubMedGoogle Scholar
  7. 7.
    Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J. 1999;13:2105–24.PubMedGoogle Scholar
  8. 8.
    Chen YG. Endocytic regulation of TGF-beta signaling. Cell Res. 2009;19:58–70.PubMedGoogle Scholar
  9. 9.
    Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82.PubMedGoogle Scholar
  11. 11.
    Lin SJ, Lerch TF, Cook RW, Jardetzky TS, Woodruff TK. The structural basis of TGF-beta, bone morphogenetic protein, and activin ligand binding. Reproduction. 2006;132:179–90.PubMedGoogle Scholar
  12. 12.
    Hill CS. Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 2009;19:36–46.PubMedGoogle Scholar
  13. 13.
    Padua D, Massague J. Roles of TGFbeta in metastasis. Cell Res. 2009;19(1):89–102.PubMedGoogle Scholar
  14. 14.
    Mullen AC, Orlando DA, Newman JJ, Loven J, Kumar RM, Bilodeau S, et al. Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell. 2011;147:565–76.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.PubMedGoogle Scholar
  16. 16.
    Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet. 2008;24:448–56.PubMedGoogle Scholar
  17. 17.
    Hobert O. Gene regulation by transcription factors and microRNAs. Science. 2008;319:1785–6.PubMedGoogle Scholar
  18. 18.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.PubMedGoogle Scholar
  19. 19.
    Esquela-Kerscher A, Slack FJ. OncomiRs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedGoogle Scholar
  20. 20.
    de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1978;75:4001–5.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Roberts AB, Lamb LC, Newton DL, Sporn MB, de Larco JE, Todaro GJ. Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. Proc Natl Acad Sci U S A. 1980;77:3494–8.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Young GD, Murphy-Ullrich JE. Molecular interactions that confer latency to transforming growth factor-beta. J Biol Chem. 2004;279:38032–9.PubMedGoogle Scholar
  23. 23.
    Saharinen J, Taipale J, Keski-Oja J. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J. 1996;15:245–53.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP. Crystal structure of the human TbetaR2 ectodomain–TGF-beta3 complex. Nat Struct Biol. 2002;9:203–8.PubMedGoogle Scholar
  25. 25.
    Luo K, Lodish HF. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J. 1997;16:1970–81.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Panopoulou E, Gillooly DJ, Wrana JL, Zerial M, Stenmark H, Murphy C, et al. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J Biol Chem. 2002;277:18046–52.PubMedGoogle Scholar
  27. 27.
    Wrighton KH, Lin X, Feng XH. Phospho-control of TGF-beta superfamily signaling. Cell Res. 2009;19:8–20.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001;114:4359–69.PubMedGoogle Scholar
  29. 29.
    Lonn P, Moren A, Raja E, Dahl M, Moustakas A. Regulating the stability of TGFbeta receptors and Smads. Cell Res. 2009;19:21–35.PubMedGoogle Scholar
  30. 30.
    Xu L. Regulation of Smad activities. Biochim Biophys Acta. 2006;1759:503–13.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009;41:263–72.PubMedGoogle Scholar
  32. 32.
    Martin GS. Cell signaling and cancer. Cancer Cell. 2003;4:167–74.PubMedGoogle Scholar
  33. 33.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedGoogle Scholar
  34. 34.
    Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell. 2003;113:301–14.PubMedGoogle Scholar
  35. 35.
    Elston R, Inman GJ. Crosstalk between p53 and TGF-beta signalling. J Signal Transduct. 2012;2012:294097.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 2009;137:87–98.PubMedGoogle Scholar
  37. 37.
    Cohen J, Chen Z, Lu SL, Yang XP, Arun P, Ehsanian R, et al. Attenuated transforming growth factor beta signaling promotes nuclear factor-kappaB activation in head and neck cancer. Cancer Res. 2009;69:3415–24.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, et al. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science. 2007;315:840–3.PubMedGoogle Scholar
  39. 39.
    Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 1999;13:804–16.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell. 2010;18:282–93.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 2012;72:5576–87.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol. 2001;3:392–9.PubMedGoogle Scholar
  43. 43.
    Wu S, Cetinkaya C, Munoz-Alonso MJ, der LN V, Bahram F, Beuger V, et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene. 2003;22:351–60.PubMedGoogle Scholar
  44. 44.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.PubMedGoogle Scholar
  45. 45.
    Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH, et al. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol. 2008;4:229.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Mestdagh P, Bostrom AK, Impens F, Fredlund E, Van Peer G, De Antonellis P, et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell. 2010;40:762–73.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, De MI, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86.PubMedGoogle Scholar
  48. 48.
    Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res. 2008;68:8191–4.PubMedGoogle Scholar
  49. 49.
    Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, et al. miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes. 2011;60:280–7.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Schubert J, Brabletz T. p53 spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res. 2011;21:705–7.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13:317–23.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One. 2012;7:e33766.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454:56–61.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010;39:373–84.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Hong L, Han Y, Zhang Y, Zhang H, Zhao Q, Wu K, et al. MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin Ther Targets. 2013;17:1073–80.PubMedGoogle Scholar
  56. 56.
    Frezzetti D, De Menna M, Zoppoli P, Guerra C, Ferraro A, Bello AM, et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene. 2011;30:275–86.PubMedGoogle Scholar
  57. 57.
    Blanco-Aparicio C, Renner O, Leal JF, Carnero A. PTEN, more than the AKT pathway. Carcinogenesis. 2007;28:1379–86.PubMedGoogle Scholar
  58. 58.
    Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell. 2008;133:403–14.PubMedGoogle Scholar
  59. 59.
    Tamguney T, Stokoe D. New insights into PTEN. J Cell Sci. 2007;120:4071–9.PubMedGoogle Scholar
  60. 60.
    Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24:7455–64.PubMedGoogle Scholar
  61. 61.
    Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N, et al. Pten in stromal fibroblasts suppresses mammary epithelial tumors. Nature. 2009;461:1084–91.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11:881–9.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14:2348–60.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18:350–9.PubMedGoogle Scholar
  65. 65.
    Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28:5369–80.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68:8164–72.PubMedGoogle Scholar
  68. 68.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.PubMedGoogle Scholar
  69. 69.
    Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.PubMedGoogle Scholar
  70. 70.
    Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383:280–5.PubMedGoogle Scholar
  71. 71.
    Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411:846–52.PubMedGoogle Scholar
  72. 72.
    Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A. 2009;106:12085–90.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q, et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell. 2011;20:635–48.PubMedGoogle Scholar
  74. 74.
    Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res. 2009;15:3998–4008.PubMedGoogle Scholar
  75. 75.
    Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C, et al. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res. 2010;70:3833–42.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012. doi: 10.1038/onc.2012.11.Google Scholar
  77. 77.
    Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38:1060–5.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, et al. miR-106a Is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog. 2012;28:2167–74.Google Scholar
  79. 79.
    Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 2008;28:2167–74.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70:3119–27.PubMedGoogle Scholar
  81. 81.
    Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 2010;285:17869–79.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Xiang X, Zhuang X, Ju S, Zhang S, Jiang H, Mu J, et al. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene. 2011;30:3440–53.PubMedGoogle Scholar
  84. 84.
    Tili E, Michaille JJ, Wernicke D, Alder H, Costinean S, Volinia S, et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci U S A. 2011;108:4908–13.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J, et al. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol. 2011;55:1339–45.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Bousquet M, Harris MH, Zhou B, Lodish HF. MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci U S A. 2010;107:21558–63.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, et al. Upregulation of miR-23a 27a 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer. 2008;123:972–8.PubMedGoogle Scholar
  88. 88.
    Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010;29:1787–97.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res. 2009;69:1279–83.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Mei J, Bachoo R, Zhang CL. MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol. 2011;31:3584–92.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, et al. microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res. 2009;1269:158–65.PubMedGoogle Scholar
  92. 92.
    Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, et al. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate. 2012;72:1171–8.PubMedGoogle Scholar
  93. 93.
    Lin SL, Chiang A, Chang D, Ying SY. Loss of mir-146a function in hormone-refractory prostate cancer. RNA. 2008;14:417–24.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Li Y, Vandenboom TG, Wang Z, Kong D, Ali S, Philip PA, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H, et al. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics. 2009;6:131–9.PubMedCentralPubMedGoogle Scholar
  96. 96.
    le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007;26:3699–708.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL, Kyba M, et al. Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells. 2011;29:764–76.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Mol Biol Cell. 2011;22:1686–98.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Roybal JD, Zang Y, Ahn YH, Yang Y, Gibbons DL, Baird BN, et al. miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol Cancer Res. 2011;9:25–35.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Feng S, Cong S, Zhang X, Bao X, Wang W, Li H, et al. MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res. 2011;39:6669–78.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Song B, Wang Y, Kudo K, Gavin EJ, Xi Y, Ju J. miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res. 2008;14:8080–6.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Li XF, Yan PJ, Shao ZM. Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene. 2009;28:3937–48.PubMedGoogle Scholar
  103. 103.
    Xu C, Liu S, Fu H, Li S, Tie Y, Zhu J, et al. MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer. 2010;46:2828–36.PubMedGoogle Scholar
  104. 104.
    Salvi A, Sabelli C, Moncini S, Venturin M, Arici B, Riva P, et al. MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J. 2009;276:2966–82.PubMedGoogle Scholar
  105. 105.
    Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A. 2008;105:5874–8.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 2009;16:23–9.PubMedGoogle Scholar
  107. 107.
    Hu M, Xia M, Chen X, Lin Z, Xu Y, Ma Y, et al. MicroRNA-141 regulates Smad interacting protein 1 (SIP1) and inhibits migration and invasion of colorectal cancer cells. Dig Dis Sci. 2010;55:2365–72.PubMedGoogle Scholar
  108. 108.
    Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A, et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci U S A. 2010;107:3710–5.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.PubMedGoogle Scholar
  110. 110.
    Hynes RO. Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell. 2003;113:821–3.PubMedGoogle Scholar
  111. 111.
    Gout S, Huot J. Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron. 2008;1:69–83.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.PubMedGoogle Scholar
  113. 113.
    Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene. 2010;29:937–48.PubMedGoogle Scholar
  114. 114.
    Ahmed S, Nawshad A. Complexity in interpretation of embryonic epithelial-mesenchymal transition in response to transforming growth factor-beta signaling. Cells Tissues Organs. 2007;185:131–45.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Wu Y, Zhou BP. New insights of epithelial–mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin (Shanghai). 2008;40:643–50.Google Scholar
  116. 116.
    Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008;27:6958–69.PubMedGoogle Scholar
  117. 117.
    Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Mol Biol Cell. 2005;16:1987–2002.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res. 2008;68:7846–54.PubMedGoogle Scholar
  120. 120.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.PubMedGoogle Scholar
  121. 121.
    Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial–mesenchymal transition and cancer metastasis. RNA Biol. 2008;5:115–9.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.PubMedGoogle Scholar
  123. 123.
    Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, et al. A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci U S A. 2009;106:14028–33.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.PubMedGoogle Scholar
  125. 125.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.PubMedGoogle Scholar
  126. 126.
    Liang YY, Brunicardi FC, Lin X. Smad3 mediates immediate early induction of Id1 by TGF-beta. Cell Res. 2009;19:140–8.PubMedGoogle Scholar
  127. 127.
    Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene. 2010;29:1351–61.PubMedGoogle Scholar
  128. 128.
    Benetti A, Berenzi A, Gambarotti M, Garrafa E, Gelati M, Dessy E, et al. Transforming growth factor-beta1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium. Cancer Res. 2008;68:8626–34.PubMedGoogle Scholar
  129. 129.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324:1710–3.PubMedGoogle Scholar
  130. 130.
    Suarez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ Res. 2009;104:442–54.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Gary Lee YC, Melkerneker D, Thompson PJ, Light RW, Lane KB. Transforming growth factor beta induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro. Am J Respir Crit Care Med. 2002;165:88–94.PubMedGoogle Scholar
  132. 132.
    Breier G, Blum S, Peli J, Groot M, Wild C, Risau W, et al. Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. Int J Cancer. 2002;97:142–8.PubMedGoogle Scholar
  133. 133.
    Alfranca A, Lopez-Oliva JM, Genis L, Lopez-Maderuelo D, Mirones I, Salvado D, et al. PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway. Blood. 2008;112:1120–8.PubMedGoogle Scholar
  134. 134.
    Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1889;8:98–101.Google Scholar
  135. 135.
    Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66:11089–93.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Langley RR, Fidler IJ. The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. Int J Cancer. 2011;128:2527–35.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Hart IR, Fidler IJ. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 1980;40:2281–7.PubMedGoogle Scholar
  138. 138.
    Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11:1287–96.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Pratap J, Wixted JJ, Gaur T, Zaidi SK, Dobson J, Gokul KD, et al. Runx2 transcriptional activation of Indian hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res. 2008;68:7795–802.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Johnson RW, Nguyen MP, Padalecki SS, Grubbs BG, Merkel AR, Oyajobi BO, et al. TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling. Cancer Res. 2011;71:822–31.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117:3648–57.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Lynch J, Fay J, Meehan M, Bryan K, Watters KM, Murphy DM, et al. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway. Carcinogenesis. 2012;33:976–85.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Kim D, Song J, Kim S, Park HM, Chun CH, Sonn J, et al. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 cross-talk in chondroblasts. J Biol Chem. 2012;287:12501–9.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Min S, Li L, Zhang M, Zhang Y, Liang X, Xie Y, et al. TGF-β-associated miR-27a inhibits dendritic cell-mediated differentiation of Th1 and Th17 cells by TAB3, p38MAPK, MAP2K4 and MAP2K7. Genes Immun. 2012;13:621–31.PubMedGoogle Scholar
  146. 146.
    Cohen EE, Zhu H, Lingen MW, Martin LE, Kuo WL, Choi EA, et al. A feed-forward loop involving protein kinase Calpha and microRNAs regulates tumor cell cycle. Cancer Res. 2009;69:65–74.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Datta J, Smith A, Lang JC, Islam M, Dutt D, Teknos TN, et al. microRNA-107 functions as a candidate tumor-suppressor gene in head and neck squamous cell carcinoma by downregulation of protein kinase Cε. Oncogene. 2012;31:4045–53.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). J Biol Chem. 2013;288:8750–61.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Caino MC, Lopez-Haber C, Kissil JL, Kazanietz MG. Non-small cell lung carcinoma cell motility, rac activation and metastatic dissemination are mediated by protein kinase C epsilon. PLoS One. 2012;7(2):e31714.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Jung HM, Patel RS, Phillips BL, Wang H, Cohen DM, Reinhold WC, et al. Tumor suppressor miR-375 regulates MYC expression via repression of CIP2A coding sequence through multiple miRNA–mRNA interactions. Mol Biol Cell. 2013;24:1638–48.PubMedCentralPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.Laboratory of Cell Cycle Regulation & Molecular Oncology, Division of Cancer ResearchRegional Cancer CentreThiruvananthapuramIndia

Personalised recommendations