Advertisement

Tumor Biology

, Volume 35, Issue 4, pp 3295–3304 | Cite as

Differential expression profiling of microRNAs and their potential involvement in esophageal squamous cell carcinoma

  • Wenqiao Zang
  • Yuanyuan Wang
  • Yuwen Du
  • Xiaoyan Xuan
  • Tao Wang
  • Min Li
  • Yunyun Ma
  • Ping Li
  • Xudong Chen
  • Ziming Dong
  • Guoqiang Zhao
Research Article

Abstract

MicroRNAs are small, noncoding RNAs approximately 18–24 nucleotides in length that negatively regulate gene expression at the posttranscriptional and/or translational level by binding to complimentary sequences in the 3′-untranslated regions of target mRNAs. Growing evidence has indicated the important roles for different miRNA species in the development of different cancers. Therefore, miRNAs have the potential to become new biological markers for esophageal squamous cell carcinoma (ESCC) and to be applied in the diagnosis, prognosis, and targeted treatment of ESCC. In this study, we performed a miRNA microarray to analyze the miRNA expression profile in ESCC compared to normal tissues. Then, we made a preliminary analysis of the biological function for the most differentially expressed miRNAs and their potentially target genes regulated. Some microarray results were validated by performing quantitative RT-PCR. The study provided evidence that linked the biological role of miRNAs to ESCC and showed that miRNAs could undertake a variety of mechanisms. Additionally, we also found that altered miR-429 and miR-451 expression levels were associated with the occurrence of lymph node metastases and the differentiation status and TNM stage in ESCC. The study of miRNAs may lead to finding novel methods to diagnose, treat, and prevent ESCC.

Keywords

Esophageal carcinoma MicroRNA Microarray 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81301726).

Conflicts of interest

None

References

  1. 1.
    Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang Y. Epidemiology of esophageal cancer. World J Gastroenterol. 2013;19(34):5598–06.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Hsu PK, Huang CS, Wang BY, Wu YC, Chou TY, Hsu WH. The prognostic value of the number of negative lymph nodes in esophageal cancer patients after transthoracic resection. Ann Thorac Surg. 2013;96(3):995–1001.PubMedCrossRefGoogle Scholar
  4. 4.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedCrossRefGoogle Scholar
  5. 5.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsang J, Zhu J, van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 2007;26:753–67.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148:1172–87.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 2009;6:65–72.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bian Z, Li LM, Tang R, Hou DX, Chen X, Zhang CY, et al. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20:1076–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Li P, Jiao J, Gao G, Prabhakar BS. Control of mitochondrial activity by miRNAs. J Cell Biochem. 2012;113:1104–10.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cairns RA, Harris I, McCracken S, Mak TW. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:299–311.PubMedCrossRefGoogle Scholar
  13. 13.
    Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 2004;1:47–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high through put gene expression profiling of microRNAs. Nat Methods. 2004;1:155–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, et al. MicroRNA expression detected by oligo nucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 2004;14:2486–94.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004;10:1813–9.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, et al. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA. 2005;11:1461–70.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Nagadia R, Pandit P, Coman WB, Cooper-White J, Punyadeera C. miRNAs in head and neck cancer revisited. Cell Oncol. 2013;36(1):1–7.CrossRefGoogle Scholar
  21. 21.
    Wang Y, Li M, Zang W, Ma Y, Wang N, Li P, et al. MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell Oncol (Dordr). 2013;36(5):385–94.CrossRefGoogle Scholar
  22. 22.
    Wang T, Zang WQ, Li M, Wang N, Zheng YL, Zhao GQ. Effect of miR-451 on the biological behavior of the esophageal carcinoma cell line EC9706. Dig Dis Sci. 2013;58(3):706–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Hu YC, Lam KY, Law S, Wong J, Srivastava G. Identification of differentially expressed genes in esophageal squamous cell carcinoma (ESCC) by cDNA expression array: overexpression of Fra-1, Neogenin, Id-1, and CDC25B genes in ESCC. Clin Cancer Res. 2001;7:2213–21.PubMedGoogle Scholar
  24. 24.
    Li Y, Chen L, Nie CJ, Zeng TT, Liu H, Mao X, et al. Downregulation of RBMS3 is associated with poor prognosis in esophageal squamous cell carcinoma. Cancer Res. 2011;19:6106–15. Dig Dis Sci. 2013 ;58(3):706–14.CrossRefGoogle Scholar
  25. 25.
    Hornstein E, Shomron N. Canalization of development by microRNAs. Nat Genet. 2006;38:S20–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M, et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg. 2008;135:255–60.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010;56:1871–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhuang, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK–STAT pathway. EMBO J. 2012;31:3513–23.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Iorio MV, Croce CM. MicroRNA involvement in human cancer. Carcinogenesis. 2012;33:1126–33.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11:1143–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, et al. The human mitochondrial transcriptome. Cell. 2011;146:645–58.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, et al. Steenbergen, Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110:1596–603.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Wenqiao Zang
    • 1
  • Yuanyuan Wang
    • 1
  • Yuwen Du
    • 1
  • Xiaoyan Xuan
    • 1
  • Tao Wang
    • 2
  • Min Li
    • 1
  • Yunyun Ma
    • 1
  • Ping Li
    • 3
  • Xudong Chen
    • 4
  • Ziming Dong
    • 1
  • Guoqiang Zhao
    • 1
  1. 1.College of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
  2. 2.Department of Hemato-tumorThe First Affiliated Hospital of Henan University of TCMZhengzhouChina
  3. 3.Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  4. 4.Department of Histology and EmbryologyLuohe Medical CollegeLuoheChina

Personalised recommendations