Skip to main content

Advertisement

Log in

The growth inhibitory effect of 17-DMAG on ALK and MYCN double-positive neuroblastoma cell line

  • Research Article
  • Published:
Tumor Biology

Abstract

Neuroblastoma (NB), an embryonal tumor derived from the neural crest, originates from sympathetic nerve system, manifests as thoracic, paraspinous or abdominal tumors, and metastases to bone in high-risk cases. Although NB stands as the most common solid tumor in early childhood and accounts for about 15 % of total pediatric cancer death, there has been limited success in searching for novel therapeutic regimen for this lethal disease during the past two decades. Numerous epidemiological and clinical studies have pinpointed anaplastic lymphoma kinase (ALK) and MYCN as potent governors for NB malignant behavior. ALK and MYCN amplification and constitutive active mutations are common in high-risk NB patients. However, there is still lack of evidence showing that a small molecule compound could simultaneously inhibits ALK and MYCN and plays strong negative regulatory roles in NB. Here, we showed that 17-DMAG, a well-known HSP-90 inhibitor, significantly inhibits NB cell growth, arrests cell cycle, and strongly induces NB cell apoptosis. Interestingly, our data suggests that NB cells with both ALK and MYCN amplification/mutation are more sensitive to 17-DMAG treatment, while NB cells with only ALK or MYCN amplification are less sensitive and NB cells without ALK or MYCN amplification/mutation are least sensitive. Moreover, we also found that knocking down ALK and MYCN additively inhibits NB cell growth and that transduction of MYCN largely abolished the ALK-dependent NB cell growth, indicating that there is a cross-talk between MYCN and ALK signaling machinery. Our results provide proof-of-principle that 17-DMAG strongly inhibits NB cell growth by targeting both ALK and MYCN. Our findings might shed a light for further investigation of novel small molecule compound which is safe and exerts similar strong effects in vivo as novel approaches for management of high-risk NB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riley RD, Heney D, Jones DR, Sutton AJ, Lambert PC, Abrams KR, et al. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin Cancer Res. 2004;10:4–12.

    Article  CAS  PubMed  Google Scholar 

  2. Hoehner JC, Gestblom C, Hedborg F, Sandstedt B, Olsen L, Pahlman S. A developmental model of neuroblastoma: differentiating stroma-poor tumors' progress along an extra-adrenal chromaffin lineage. Lab Invest. 1996;75:659–75.

    CAS  PubMed  Google Scholar 

  3. Bown N. Neuroblastoma tumour genetics: clinical and biological aspects. J Clin Pathol. 2001;54:897–910.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Maris JM. Recent advances in neuroblastoma. New Engl J Med. 2010;362:2202–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's cancer group. New Engl J Med. 1999;341:1165–73.

    Article  CAS  PubMed  Google Scholar 

  7. Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM. Enhanced expression of the human gene n-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci U S A. 1984;81:4940–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Schwab M. Mycn in neuronal tumours. Cancer Lett. 2004;204:179–87.

    Article  CAS  PubMed  Google Scholar 

  9. Westermark UK, Wilhelm M, Frenzel A, Henriksson MA. The mycn oncogene and differentiation in neuroblastoma. Semin Cancer Biol. 2011;21:256–66.

    Article  CAS  PubMed  Google Scholar 

  10. Dang CV. Myc on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. George RE, Sanda T, Hanna M, Frohling S, Luther 2nd W, Zhang J, et al. Activating mutations in alk provide a therapeutic target in neuroblastoma. Nature. 2008;455:975–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of alk as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the alk kinase receptor in neuroblastoma. Nature. 2008;455:967–70.

    Article  CAS  PubMed  Google Scholar 

  14. Azarova AM, Gautam G, George RE. Emerging importance of alk in neuroblastoma. Semin Cancer Biol. 2011;21:267–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al. Oncogenic mutations of alk kinase in neuroblastoma. Nature. 2008;455:971–4.

    Article  CAS  PubMed  Google Scholar 

  16. Ogawa S, Takita J, Sanada M, Hayashi Y. Oncogenic mutations of alk in neuroblastoma. Cancer Sci. 2011;102:302–8.

    Article  CAS  PubMed  Google Scholar 

  17. Carpenter EL, Mosse YP. Targeting alk in neuroblastoma—preclinical and clinical advancements. Nat Rev Clin Oncol. 2012;9:391–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. De Brouwer S, De Preter K, Kumps C, Zabrocki P, Porcu M, Westerhout EM, et al. Meta-analysis of neuroblastomas reveals a skewed alk mutation spectrum in tumors with mycn amplification. Clin Cancer Res. 2010;16:4353–62.

    Article  PubMed  Google Scholar 

  19. Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, et al. The alk(f1174l) mutation potentiates the oncogenic activity of mycn in neuroblastoma. Cancer Cell. 2012;22:117–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, et al. Activated alk collaborates with mycn in neuroblastoma pathogenesis. Cancer Cell. 2012;21:362–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schonherr C, Ruuth K, Kamaraj S, Wang CL, Yang HL, Combaret V, et al. Anaplastic lymphoma kinase (ALK) regulates initiation of transcription of mycn in neuroblastoma cells. Oncogene. 2012;31:5193–200.

    Article  CAS  PubMed  Google Scholar 

  22. Pacey S, Wilson RH, Walton M, Eatock MM, Hardcastle A, Zetterlund A, et al. A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-dmag) given intravenously to patients with advanced solid tumors. Clin Cancer Res. 2011;17:1561–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kobayashi N, Toyooka S, Soh J, Yamamoto H, Dote H, Kawasaki K, et al. The anti-proliferative effect of heat shock protein 90 inhibitor, 17-dmag, on non-small-cell lung cancers being resistant to egfr tyrosine kinase inhibitor. Lung Cancer. 2012;75:161–6.

    Article  PubMed  Google Scholar 

  24. Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig HH, et al. In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol. 2005;56:115–25.

    Article  CAS  PubMed  Google Scholar 

  25. Smith MA, Morton CL, Phelps DA, Kolb EA, Lock R, Carol H, et al. Stage 1 testing and pharmacodynamic evaluation of the hsp90 inhibitor alvespimycin (17-dmag, kos-1022) by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;51:34–41.

    Article  PubMed  Google Scholar 

  26. Jhaveri K, Miller K, Rosen L, Schneider B, Chap L, Hannah A, et al. A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (kos-1022; 17 dmag) in the treatment of advanced solid tumors. Clin Cancer Res. 2012;18:5090–8.

    Article  CAS  PubMed  Google Scholar 

  27. Regan PL, Jacobs J, Wang G, Torres J, Edo R, Friedmann J, et al. Hsp90 inhibition increases p53 expression and destabilizes mycn and myc in neuroblastoma. Int J Oncol. 2011;38:105–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen Z, Sasaki T, Tan X, Carretero J, Shimamura T, Li D, et al. Inhibition of alk, pi3k/mek, and hsp90 in murine lung adenocarcinoma induced by eml4-alk fusion oncogene. Cancer Res. 2010;70:9827–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013;13:397–411.

    Article  CAS  PubMed  Google Scholar 

  30. Schulte JH, Lindner S, Bohrer A, Maurer J, De Preter K, Lefever S, et al. Mycn and alkf1174l are sufficient to drive neuroblastoma development from neural crest progenitor cells. Oncogene. 2013;32:1059–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Western blots of cell cycle markers CDK1 and Cyclin B1 confirmed that 17-DMAG treatment in NB cell lines caused cell cycle arrest. GOTO, CHP-134, KELLY and NB-1 cells were treated with 0 (Veh) or 0.15 μM 17-DMAG (DMA) for 24 hours and protein lysates were subjected to immunoblot analysis with the indicated antibodies. (JPEG 8 kb)

High resolution image (TIFF 491 kb)

Supplemental Fig. 2

17-DMAG mildly decreased HSP90 expression in NB cell lines. GOTO, CHP-134, KELLY and NB-1 cells were treated with 0 (Veh) or 0.15 μM 17-DMAG for 24 h and were subjected to ELISA analysis. Statistically significant differences compared to the corresponding data for vehicle of each cell line were shown (*p < 0.05). Data shown are the mean values (±SE) from three independent experiments. (JPEG 44 kb)

High resolution image (TIFF 139 kb)

Supplemental Table 1

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, B., Yang, J. & Wang, L. The growth inhibitory effect of 17-DMAG on ALK and MYCN double-positive neuroblastoma cell line. Tumor Biol. 35, 3229–3235 (2014). https://doi.org/10.1007/s13277-013-1422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1422-7

Keywords

Navigation