Skip to main content

Advertisement

Log in

Prognostic significance of dickkopf-1 overexpression in solid tumors: a meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

The prognostic significance of dickkopf-1 (DKK1) overexpression in solid tumors remains inconclusive. We performed a meta-analysis to evaluate the impact of DKK1 overexpression in solid tumors on patients' overall survival (OS) and disease-free survival (DFS). The pooled hazard ratio (HR) with 95 % confidence interval (CI) was used to estimate the effects. Thirteen studies were included for meta-analysis; four that evaluated hepatocellular carcinoma (HCC), two each that evaluated ovarian carcinoma, esophageal carcinoma, and lung cancer, and one each that evaluated other cancers, namely gastric cancer, breast cancer, urothelial carcinoma, and colorectal cancer. Twelve studies were evaluable for OS and six for DFS. Our analysis results indicated that DKK1 overexpression predicted poor OS (HR = 1.68, 95 % CI 1.36–2.08; P < 0.001) and DFS (HR = 1.65, 95 % CI 1.37–1.99; P < 0.001). Subgroup analyses showed that DKK1 overexpression was significantly related with poor OS in HCC patients (HR = 1.65; P < 0.001), ovarian carcinoma patients (HR = 2.63; P = 0.045), and other cancers patients (HR = 1.51; P = 0.021). Further, DKK1 overexpression was significantly related with poor DFS in HCC patients (HR = 1.53; P < 0.001) and other cancers patients (HR = 2.02; P < 0.001). This meta-analysis showed that DKK1 may be a novel prognostic marker in solid tumors in Asian patients; it could potentially help to further stratify patients for clinical treatment. More, well-designed studies from Western countries are needed to confirm this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paul D, Kumar A, Gajbhiye A, Santra MK, Srikanth R. Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. Biomed Res Int. 2013;2013:783131.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Zhang CH, Xu GL, Jia WD, Ge YS, Li JS, Ma JL, et al. Prognostic significance of osteopontin in hepatocellular carcinoma: a meta-analysis. Int J Cancer J Int Du Cancer. 2012;130:2685–92.

    Article  CAS  Google Scholar 

  3. Jiang JW, Liang XH, Zhou XL, Huang RF, Chu ZH, Zhan Q. Ercc1 expression as a prognostic and predictive factor in patients with non-small cell lung cancer: a meta-analysis. Mol Biol Rep. 2012;39:6933–42.

    Article  CAS  PubMed  Google Scholar 

  4. Yang H, Chen B. Cd147 in ovarian and other cancers. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc. 2013;23:2–8.

    Article  Google Scholar 

  5. Ma X, Liu L, Nie W, Li Y, Zhang B, Zhang J, et al. Prognostic role of caveolin in breast cancer: a meta-analysis. Breast. 2013;22:462–9.

    Article  PubMed  Google Scholar 

  6. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998;391:357–62.

    Article  CAS  PubMed  Google Scholar 

  7. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, et al. Dkk1, a negative regulator of wnt signaling, is a target of the beta-catenin/tcf pathway. Oncogene. 2004;23:8520–6.

    Article  CAS  PubMed  Google Scholar 

  8. Sato N, Yamabuki T, Takano A, Koinuma J, Aragaki M, Masuda K, et al. Wnt inhibitor dickkopf-1 as a target for passive cancer immunotherapy. Cancer Res. 2010;70:5326–36.

    Article  CAS  PubMed  Google Scholar 

  9. Forget MA, Turcotte S, Beauseigle D, Godin-Ethier J, Pelletier S, Martin J, et al. The wnt pathway regulator dkk1 is preferentially expressed in hormone-resistant breast tumours and in some common cancer types. Br J Cancer. 2007;96:646–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jiang T, Huang L, Zhang S. Dkk-1 in serum as a clinical and prognostic factor in patients with cervical cancer. Int J Biol Markers. 2013;28:e221–5.

    Article  Google Scholar 

  11. Gao C, Xie R, Ren C, Yang X. Dickkopf-1 expression is a novel prognostic marker for gastric cancer. J Biomed Biotechnol. 2012;2012:804592.

    PubMed Central  PubMed  Google Scholar 

  12. Hall CL, Daignault SD, Shah RB, Pienta KJ, Keller ET. Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate. 2008;68:1396–404.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Yang H, Chen GD, Fang F, Liu Z, Lau SH, Zhang JF, Lau WY, Yang LY: Dickkopf-1: as a diagnostic and prognostic serum marker for early hepatocellular carcinoma. The International journal of biological markers 2013:0.

  14. Tao YM, Liu Z, Liu HL. Dickkopf-1 (dkk1) promotes invasion and metastasis of hepatocellular carcinoma. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2013;45:251–7.

    Article  CAS  Google Scholar 

  15. Lee HS, Lee HE, Park Do J, Kim HH, Kim WH, Park KU. Clinical significance of serum and tissue dickkopf-1 levels in patients with gastric cancer. Clinica chimica acta. Int J Clin Chem. 2012;413:1753–60.

    CAS  Google Scholar 

  16. Wang S, Zhang S. Dickkopf-1 is frequently overexpressed in ovarian serous carcinoma and involved in tumor invasion. Clin Exp Metastasis. 2011;28:581–91.

    Article  CAS  PubMed  Google Scholar 

  17. Yu B, Yang X, Xu Y, Yao G, Shu H, Lin B, et al. Elevated expression of dkk1 is associated with cytoplasmic/nuclear beta-catenin accumulation and poor prognosis in hepatocellular carcinomas. J Hepatol. 2009;50:948–57.

    Article  CAS  PubMed  Google Scholar 

  18. Shizhuo W, Tao J, Shulan Z, Bing Z. The expression and significance of dickkopf-1 in epithelial ovarian carcinoma. Int J Biol Markers. 2009;24:165–70.

    PubMed  Google Scholar 

  19. Sheng SL, Huang G, Yu B, Qin WX. Clinical significance and prognostic value of serum dickkopf-1 concentrations in patients with lung cancer. Clin Chem. 2009;55:1656–64.

    Article  PubMed  Google Scholar 

  20. Makino T, Yamasaki M, Takemasa I, Takeno A, Nakamura Y, Miyata H, et al. Dickkopf-1 expression as a marker for predicting clinical outcome in esophageal squamous cell carcinoma. Ann Surg Oncol. 2009;16:2058–64.

    Article  PubMed  Google Scholar 

  21. Yamabuki T, Takano A, Hayama S, Ishikawa N, Kato T, Miyamoto M, et al. Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas. Cancer Res. 2007;67:2517–25.

    Article  CAS  PubMed  Google Scholar 

  22. Xu WH. Liu ZB, Yang C, Qin W, Shao ZM: Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype. PLoS One. 2012;7:e37624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tung EK, Mak CK, Fatima S, Lo RC, Zhao H, Zhang C, et al. Clinicopathological and prognostic significance of serum and tissue dickkopf-1 levels in human hepatocellular carcinoma. Liver Int Off J Int Assoc Study Liver. 2011;31:1494–504.

    Article  CAS  Google Scholar 

  24. Shen CH, Hsieh HY, Wang YH, Chen SY, Tung CL, Wu JD, et al. High dickkopf-1 expression is associated with poor prognosis in patients with advanced urothelial carcinoma. Exp Ther Med. 2010;1:893–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hao JM, Chen JZ, Sui HM, Si-Ma XQ, Li GQ, Liu C, et al. A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol. 2010;220:475–89.

    CAS  PubMed  Google Scholar 

  26. Pozzi S, Fulciniti M, Yan H, Vallet S, Eda H, Patel K, et al. In vivo and in vitro effects of a novel anti-dkk1 neutralizing antibody in multiple myeloma. Bone. 2013;53:487–96.

    Article  CAS  PubMed  Google Scholar 

  27. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, et al. Anti-dkk1 mab (bhq880) as a potential therapeutic agent for multiple myeloma. Blood. 2009;114:371–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA: J Am Med Assoc. 2000;283:2008–12.

    Article  CAS  Google Scholar 

  29. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P: The newcastle-ottawa scale (nos) for assessing the quality of nonrandomized studies in meta-analyses.

  30. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.

    Article  CAS  PubMed  Google Scholar 

  31. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  32. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327:557–60.

    Article  Google Scholar 

  33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  34. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    CAS  PubMed  Google Scholar 

  35. Galbraith RF. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med. 1988;7:889–94.

    Article  CAS  PubMed  Google Scholar 

  36. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  37. Egger M. Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed). 1997;315:629–34.

    Article  CAS  Google Scholar 

  38. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    Article  CAS  PubMed  Google Scholar 

  39. Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000;232:10–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gonzalex-Sancho JM, Aguilera O, Garcia JM, Pendas-Franco N, Pena C, Cal S, et al. The wnt antagonist dickkopf-1 gene is a downstream target of beta-catenin/tcf and is downregulated in human colon cancer. Oncogene. 2005;24:1098–103.

    Article  Google Scholar 

Download references

Acknowledgments

No funding was provided for the analysis.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Li or Xue Qin.

Additional information

Yanqiong Liu and Weizhong Tang contributed equally to this study and should be considered as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 60 kb)

ESM 2

(PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Tang, W., Xie, L. et al. Prognostic significance of dickkopf-1 overexpression in solid tumors: a meta-analysis. Tumor Biol. 35, 3145–3154 (2014). https://doi.org/10.1007/s13277-013-1411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1411-x

Keywords

Navigation