Tumor Biology

, Volume 35, Issue 4, pp 3119–3123 | Cite as

p21 overexpression sensitizes osteosarcoma U2OS cells to cisplatin via evoking caspase-3 and Bax/Bcl-2 cascade

  • Yong Ding
  • Yucai Wang
  • Jun Chen
  • Yunsheng Hu
  • Zhuo Cao
  • Pengcheng Ren
  • Yong Zhang
Research Article


Osteosarcoma is the most common form of primary malignant bone tumor that mainly occurs in juvenile patients. The mechanisms of formation and development of osteosarcoma have been studied for a long time. Recently, more and more evidence showed that p21 plays important roles in regulating tumor growth. To study the effects of p21 on the chemosensitivity of human osteosarcoma U2OS cells to cisplatin and its relevant mechanisms, we stably transfect the pC-21-SN3 vector containing P21 to U2O3 cells (U2O3-p21), which was identified by RT-PCR and Western blot. The results showed that no p21 was expressed in U2OS and U2OS-vec cells, but it was highly expressed in U2O3-p21 cells at mRNA and protein levels. The growth of U2OS cells was almost not influenced by p21 alone. However, U2O3-p21 cells underwent more obvious apoptotic morphological changes than U2OS and U2OS-vec cells after being treated with cisplatin (5 μg) for 72 h. Besides, increased expression of cleaved caspase-3 and Bax/Bcl-2 ratio was observed in cisplatin-treated U2O3-p21 cells. These data clearly indicated that exogenous p21 gene transfection could enhance the cisplatin-induced cytotoxicity against human osteosarcoma U2OS cells, at least in part, by activating caspase-3 cascade and increasing Bax/Bcl-2 ratio.


Tumor suppressor gene p21 Cisplatin Osteosarcoma U2OS Apoptosis 


Conflicts of interest



  1. 1.
    Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75:805–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell. 1994;76:1013–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Ando T, Kawabe T, Ohara H, Ducommun B, Itoh M, Okamoto T. Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem. 2001;276:42971–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Dash BC, El-Deiry WS. Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol. 2005;25:3364–87.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Matsumoto T, Sowa Y, Ohtani-Fujita N, Tamaki T, Takenaka T, Kuribayashi K, et al. p53-independent induction of WAF1/Cip1 is correlated with osteoblastic differentiation by vitamin D3. Cancer Lett. 1998;129:61–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Gartel AL, Serfas MS, Tyner AL. p21-negative regulator of the cell cycle. Proc Soc Exp Biol Med. 1996;213:138–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res. 2001;61:6234–8.PubMedGoogle Scholar
  9. 9.
    Young NP, Crowley D, Jacks T. Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res. 2011;71:4040–7.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zhang Y, Sturgis EM, Zafereo ME, Wei Q, Li G. p14ARF genetic polymorphisms and susceptibility to second primary malignancy in patients with index squamous cell carcinoma of the head and neck. Cancer. 2011;117:1227–35.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–43.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Hirata M, Kusuzaki K, Takeshita H, Hashiguchi S, Hirasawa Y, Ashihara T. Drug resistance modification using pulsing electromagnetic field stimulation for multidrug resistant mouse osteosarcoma cell line. Anticancer Res. 2001;21:317–20.PubMedGoogle Scholar
  14. 14.
    Takeshita H, Gebhardt MC, Springfield DS, Kusuzaki K, Mankin HJ. Experimental models for the study of drug resistance in osteosarcoma: p-glycoprotein-positive, murine osteosarcoma cell lines. J Bone Joint Surg. 1996;78A:366–75.Google Scholar
  15. 15.
    Kuijjer ML, Rydbeck H, Kresse SH, Buddingh EP, Lid AB, Roelofs H, et al. Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes Chromosomes Cancer. 2012;51:696–706.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhong GX, Liu AL, Lin JH. Detection of femtomolar level osteosarcoma-related gene via a chronocoulometric DNA biosensor based on nanostructure gold electrode. Int J Nanomedicine. 2012;7:527–36.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Matsui TA, Sowa Y, Murata H, Takagi K, Nakanishi R, Aoki S, et al. The plant alkaloid cryptolepine induces p21WAF1/CIP1 and cell cycle arrest in a human osteosarcoma cell line. Int J Oncol. 2007;31:915–22.PubMedGoogle Scholar
  18. 18.
    Izawa H, Yamamoto H, Damdinsuren B, Ikeda K, Tsujie M, Suzuki R, et al. Effects of p21cip1/waf1 overexpression on growth, apoptosis and differentiation in human colon carcinoma cells. Int J Oncol. 2005;27:69–76.PubMedGoogle Scholar
  19. 19.
    Wang WZ, Zhang BY, Mei WJ, Mao JW, Li M. Effect of p21-targeted shRNA on curcumin-induced apoptosis of human hepatoma Huh7 cells. Yao Xue Xue Bao. 2009;44:1102–6.PubMedGoogle Scholar
  20. 20.
    Li Z, Yang L, Wang J, Shi W, Pawar RA, Liu Y, et al. beta-Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish Shellfish Immunol. 2010;29:89–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Liao WM, Zhang CL, Li FB, Zeng BF, Zeng YX. p21WAF1/CIP1 gene DNA sequencing and its expression in human osteosarcoma. Chin Med J (Engl). 2004;117:936–40.Google Scholar
  22. 22.
    Zhang CL, Liao WM, Li FB, Zeng BF, Zeng YX. Prognostic significance of p21 (WAF1) expression in osteosarcoma. Zhonghua Bing Li Xue Za Zhi. 2005;34:524–7.PubMedGoogle Scholar
  23. 23.
    Huschtscha L, Bartier W, Malmstrom A, Tattersall M. Cell death by apoptosis following anticancer drug treatment in vitro. Int J Oncol. 1995;6:585–93.PubMedGoogle Scholar
  24. 24.
    Vinatier D, Dufour P, Subtil D. Apoptosis: a programmed cell death involved in ovarian and uterine physiology. Eur J Obstet Gynecol Reprod Biol. 1996;67:85–102.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009;43:95–118.PubMedCrossRefGoogle Scholar
  26. 26.
    Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12:440–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Vinatier D, Dufour P, Subtil D. Caspases: pharmacological manipulation of cell death. Eur J Obstet Gynecol Reprod Biol. 1996;67:85–102.PubMedCrossRefGoogle Scholar
  28. 28.
    Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene. 2004;23:2797–808.PubMedCrossRefGoogle Scholar
  29. 29.
    Soldani C, Scovassi AI. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 2002;7:321–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Orrenius S. Mitochondrial regulation of apoptotic cell death. Toxicol Lett. 2004;149:19–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic Bcl-2 family members. Biochem Biophys Res Commun. 2003;304:437–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Meeran SM, Katiyar SK. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential. Exp Dermatol. 2007;16:405–15.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.Institute of OsteosarcomaTangdu Hospital of the Fourth Military Medical UniversityXi′anPeople′s Republic of China

Personalised recommendations