Advertisement

Tumor Biology

, Volume 35, Issue 4, pp 2997–3002 | Cite as

Fibroblast growth factor receptor 4 polymorphism is associated with increased risk and poor prognosis of non-Hodgkin’s lymphoma

  • Lei Gao
  • Zhenjun Feng
  • Qiang Li
  • Lianqing Li
  • Lei Chen
  • Taiwu Xiao
Research Article

Abstract

Fibroblast growth factor receptor 4 (FGFR4) is expressed in various cell types and plays important roles in regulating immune responses. Evidence has shown that FGFR4 rs351855 (Gly388Arg) polymorphism may act as a risk factor for many diseases. In the current study, we investigated the association between FGFR4 polymorphisms and the susceptibility to non-Hodgkin’s lymphoma (NHL) in the Chinese population. Two polymorphisms in the FGFR4 gene (rs351855G/A and rs147603016G/A) were detected by polymerase chain reaction–restriction fragment length polymorphism in 421 NHL cases and 486 healthy controls. Results showed that prevalence of rs351855AA genotype was significantly increased in patients than in controls (odds ratio [OR] = 2.02, 95 % confidence interval [CI] 1.91–3.23, P < 0.001). Similarly, rs351855A allele presented significantly higher numbers in cases compared to healthy donors (49.8 versus 40.1 %, P < 0.001). Further study revealed that the frequency of the rs351855G/A polymorphism was clearly elevated in cases with B cell subtype than those with T cell subtypes. When analyzing the survival time of NHL patients with FGFR4 rs351855G/A polymorphism, cases with AA genotype had significantly shorter survival time compared to the patients with GG genotype (P < 0.001) or GA genotype (P < 0.001). These results suggest that FGFR4 rs351855G/A polymorphism is associated with increased susceptibility to NHL and could be used as a marker for predicting the prognosis of the malignancy.

Keywords

FGFR4 Polymorphism Prognosis NHL 

Notes

Conflicts of interest

None

References

  1. 1.
    Muller AM, Ihorst G, Mertelsmann R, Engelhardt M. Epidemiology of non-Hodgkin’s lymphoma (NHL): trends, geographic distribution, and etiology. Ann Hematol. 2005;84:1–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Macias-Perez IM, Flinn IW. B-cell receptor pathobiology and targeting in NHL. Curr Oncol Report. 2012;14:411–8.CrossRefGoogle Scholar
  3. 3.
    Liu R, Li J, Xie K, Zhang T, Lei Y, Chen Y, et al. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer. Cancer Res. 2013;73:5926–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Kelleher FC, O’Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis. 2013;34:2198–205.PubMedCrossRefGoogle Scholar
  5. 5.
    Fawdar S, Trotter EW, Li Y, Stephenson NL, Hanke F, Marusiak AA, et al. Targeted genetic dependency screen facilitates identification of actionable mutations in FGFR4, MAP3K9, and PAK5 in lung cancer. Proc Natl Acad Sci U S A. 2013;110:12426–31.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F. Angiogenesis spectrum in the stroma of B cell non-Hodgkin’s lymphoma: an immunohistochemical and ultrastructural study. Eur J Haematol. 1996;56:45–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Charbonneau B, Vogel RI, Manivel JC, Rizzardi A, Schmechel SC, Ognjanovic S, et al. Expression of FGFR3 and FGFR4 and clinical risk factors associated with progression-free survival in synovial sarcoma. Hum Pathol. 2013;44:1918–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Ishigami T, Hida Y, Matsudate Y, Murao K, Kubo Y. The involvement of fibroblast growth factor receptor signaling pathways in dermatofibroma and dermatofibrosarcoma protuberans. J Med Invest. 2013;60:106–13.PubMedGoogle Scholar
  9. 9.
    Lindner V, Lappi DA, Baird A, Majack RA, Reidy MA. Role of basic fibroblast growth factor in vascular lesion formation. Circ Res. 1991;68:106–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Bjornsson TD, Dryjski M, Tluczek J, Mennie R, Ronan J, Mellin TN, et al. Acidic fibroblast growth factor promotes vascular repair. Proc Natl Acad Sci U S A. 1991;88:8651–5.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Reidy MA, Lindner V. Basic FGF and growth of arterial cells. Ann N Y Acad Sci. 1991;638:290–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu MT, Hwang ST. CXCR5-transduced bone marrow-derived dendritic cells traffic to B cell zones of lymph nodes and modify antigen-specific immune responses. J Immunol. 2002;168:5096–102.PubMedGoogle Scholar
  13. 13.
    Casscells W, Lappi DA, Olwin BB, Wai C, Siegman M, Speir EH, et al. Elimination of smooth muscle cells in experimental restenosis: targeting of fibroblast growth factor receptors. Proc Natl Acad Sci U S A. 1992;89:7159–63.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Cuevas P, Gonzalez AM, Carceller F, Baird A. Vascular response to basic fibroblast growth factor when infused on to the normal adventitia or into the injured media of the rat carotid artery. Circ Res. 1991;69:360–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Nabel EG, Yang ZY, Plautz G, Forough R, Zhan X, Haudenschild CC, et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature. 1993;362:844–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Eisemann A, Ahn JA, Graziani G, Tronick SR, Ron D. Alternative splicing generates at least five different isoforms of the human basic-FGF receptor. Oncogene. 1991;6:1195–202.PubMedGoogle Scholar
  17. 17.
    Champion-Arnaud P, Ronsin C, Gilbert E, Gesnel MC, Houssaint E, Breathnach R. Multiple mRNAs code for proteins related to the BEK fibroblast growth factor receptor. Oncogene. 1991;6:979–87.PubMedGoogle Scholar
  18. 18.
    Werner S, Duan DS, De Vries C, Peters KG, Johnson DE, Williams LT. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol. 1992;12:82–8.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Templeton TJ, Hauschka SD. FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFRI. Dev Biol. 1992;154:169–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Mikawa T. Retroviral targeting of FGF and FGFR in cardiomyocytes and coronary vascular cells during heart development. Ann N Y Acad Sci. 1995;752:506–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang J, Yu W, Cai Y, Ren C, Ittmann MM. Altered fibroblast growth factor receptor 4 stability promotes prostate cancer progression. Neoplasia. 2008;10:847–56.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Frullanti E, Berking C, Harbeck N, Jézéquel P, Haugen A, Mawrin C, et al. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur J Cancer Prev. 2011;20:340–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang W, Song H, Liu J, Song B, Cao X. CD86 + 1057G/A polymorphism and susceptibility to osteosarcoma. DNA Cell Biol. 2011;30:925–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu Y, He Z, Feng D, Shi G, Gao R, Wu X, et al. Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to osteosarcoma. DNA Cell Biol. 2011;30:1051–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Ma L, Song H, Zhang M, Zhang D. Lysyl oxidase G473A Polymorphism is associated with increased risk of coronary artery diseases. DNA Cell Biol. 2011;30:1033–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang Y, Zhou Y, Lu M, An Y, Li R, Chen Y, et al. Association between fibroblast growth factor receptor 4 polymorphisms and risk of hepatocellular carcinoma. Mol Carcinog. 2012;51:515–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu Q, Liu T. Fibroblast growth factor receptor 4 polymorphisms and coronary artery disease: a case control study. Mol Biol Rep. 2012;39:8679–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.PubMedCrossRefGoogle Scholar
  29. 29.
    Matsumoto-Yoshitomi S, Habashita J, Nomura C, Kuroshima K, Kurokawa T. Autocrine transformation by fibroblast growth factor 9 (FGF-9) and its possible participation in human oncogene. Int J Cancer. 1997;71:442–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Leung HY, Gullick WJ, Lemoine NR. Expression and functional activity of fibroblast growth factors and their receptors in human pancreatic cancer. Int J Cancer. 1994;59:667–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Jaakkola S, Salmikangas P, Nylund S, Partanen J, Armstrong E, Pyrhönen S, et al. Amplification of fgfr4 gene in human breast and gynecological cancers. Int J Cancer. 1993;54:378–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Lehtola L, Partanen J, Sistonen L, Korhonen J, Wärri A, Härkönen P, et al. Analysis of tyrosine kinase mRNAs including four FGF receptor mRNAs expressed in MCF-7 breast-cancer cells. Int J Cancer. 1992;50:598–603.PubMedCrossRefGoogle Scholar
  33. 33.
    Takahashi A, Sasaki H, Kim SJ, Kakizoe T, Miyao N, Sugimura T, et al. Identification of receptor genes in renal cell carcinoma associated with angiogenesis by differential hybridization technique. Biochem Biophys Res Commun. 1999;257:855–9.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Lei Gao
    • 1
  • Zhenjun Feng
    • 1
  • Qiang Li
    • 1
  • Lianqing Li
    • 2
  • Lei Chen
    • 1
  • Taiwu Xiao
    • 1
  1. 1.Department of HematologyLiaocheng People’s HospitalLiaochengChina
  2. 2.Department of ENTLiaocheng People’s HospitalLiaochengChina

Personalised recommendations