Tumor Biology

, Volume 35, Issue 3, pp 2549–2559 | Cite as

Induction of apoptosis by total flavonoids from Scutellaria barbata D. Don in human hepatocarcinoma MHCC97-H cells via the mitochondrial pathway

  • Jie Gao
  • Wang-Feng Lu
  • Zhi-Jun Dai
  • Shuai Lin
  • Yang Zhao
  • Sha Li
  • Nuan-Nuan Zhao
  • Xi-Jing Wang
  • Hua-Feng Kang
  • Xiao-Bin Ma
  • Wang-Gang Zhang
Research Article


Scutellaria barbata D. Don, a traditional Chinese medicine, reportedly possesses antitumor activity against a variety of tumors. In the present study, we investigated the cytotoxic effect of total flavonoids from S. barbata (TF-SB) on human hepatocarcinoma cells and the underlying molecular mechanisms regarding the effect were explored. TF-SB treatment significantly reduced the cell viability of human HCC MHCC97-H cells in a dose-dependent manner. Further flow cytometric analysis showed that the apoptosis rate of MHCC97-H cells increased and the mitochondrial membrane potential (∆ψm) of MHCC97-H cells decreased after TF-SB treatment. DNA ladder showed that TF-SB induced a significant increase in DNA fragmentation in MHCC97-H cells. Reverse transcription PCR and Western blot analysis revealed that the expression levels of Smac, Apaf-1, Cytochrome c, Caspase-9, and Caspase-3 were upregulated in a dose-dependent manner and after treatment with different concentrations of TF-SB for 48 h. These results suggest that TF-SB induces apoptosis in MHCC97-H cells through the mitochondrial pathway.


Scutellaria barbata Hepatocarcinoma Appptosis Mitochondrial 



Hepatocellular carcinoma


Total flavones of Scutellaria barbatae


Mitochondrial membrane potential


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide


Dulbecco’s modified Eagle’s medium


Second mitochondria-derived activator of caspase


Apoptotic protease activating factor


Reverse transcription polymerase chain reaction


High-performance liquid chromatography


Propidium iodide


Flow cytometry



This study was supported by National Natural Science Foundation of China, no. 81102711; the Fundamental Research Funds for the Central Universities, China, no. xjj2011039; and Sci-Tech Program of Administration of Traditional Chinese Medicine of Shaanxi Province, China, no. 13-JC005.

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen P, Hu MD, Deng XF, Li B. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pac J Cancer Prev. 2013;14:759–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Marrero JA. Multidisciplinary management of hepatocellular carcinoma: where are we today? Semin Liver Dis. 2013;33:S3–S10.PubMedCrossRefGoogle Scholar
  4. 4.
    Ali R, Mirza Z, Ashraf GM, Kamal MA, Ansari SA, et al. New anticancer agents: recent developments in tumor therapy. Anticancer Res. 2012;32:2999–3005.PubMedGoogle Scholar
  5. 5.
    Gotoh H, Sears JE, Eschenmoser A, Boger DL. New insights into the mechanism and an expanded scope of the Fe(III)-mediated vinblastine coupling reaction. J Am Chem Soc. 2012;134:13240–3.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Namdeo A, Sharma A. HPLC analysis of camptothecin content in various parts of Nothapodytes foetida collected on different periods. Asian Pac J Trop Biomed. 2012;2:389–93.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Dai ZJ, Tang W, Lu WF, Gao J, Kang HF, Ma XB, et al. Antiproliferative and apoptotic effects of β-elemene on human hepatoma HepG2 cells. Cancer Cell Int. 2013;13:27.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Dai ZJ, Wang XJ, Li ZF, Ji ZZ, Ren HT, Tang W, et al. Scutellaria barbate extract induces apoptosis of hepatoma H22 cells via the mitochondrial pathway involving caspase-3. World J Gastroenterol. 2008;14:7321–8.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Chen BD, Ning ML, Zhou WY, Zou LL, Yu SN. Antitumour effects of Scutellaria barbata ethanol extracts in mice transplanted with human hepatocellular carcinoma (HepG2) cells. Afr J Pharm Pharmacol. 2011;5:1553–7.CrossRefGoogle Scholar
  10. 10.
    Goh D, Lee YH, Ong ES. Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Agric Food Chem. 2005;53:8197–204.PubMedCrossRefGoogle Scholar
  11. 11.
    Yin X, Zhou J, Jie C, Xing D, Zhang Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549. Life Sci. 2004;75:2233–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Perez AT, Arun B, Tripathy D, Tagliaferri MA, Shaw HS, Kimmick GG, et al. A phase 1B dose escalation trial of Scutellaria barbata (BZL101) for patients with metastatic breast cancer. Breast Cancer Res Treat. 2010;120:111–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y, Xu SS, Chen JW, Wang Y, Xu HQ, Fan NB, et al. Anti-tumor activity of Annona squamosa seeds extract containing annonaceous acetogenin compounds. J Ethnopharmacol. 2012;142:462–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalimuthu S, Se-Kwon K. Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int J Mol Sci. 2013;14:2334–54.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yoo KH, Park JH, Lee DK, Fu YY, Baek NI, Chung IS. Pomolic acid induces apoptosis in SK-OV-3 human ovarian adenocarcinoma cells through the mitochondrial-mediated intrinsic and death receptor-induced extrinsic pathways. Oncol Lett. 2013;5:386–90.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Delivani P, Martin SJ. Mitochondrial membrane remodeling in apoptosis: an inside story. Cell Death Differ. 2006;13:2007–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Xu YY, You YW, Ren XH, Ding Y, Cao J, Zang WD, et al. Endoplasmic reticulum stress-mediated signaling pathway of gastric cancer apoptosis. Hepatogastroenterology. 2012;59:2377–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Niu CC, Lin SS, Yuan LJ, Chen LH, Wang IC, Tsai TT, et al. Hyperbaric oxygen treatment suppresses MAPK signaling and mitochondrial apoptotic pathway in degenerated human intervertebral disc cells. J Orthop Res. 2013;31:204–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Culbreth ME, Harrill JA, Freudenrich TM, Mundy WR, Shafer TJ. Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Neurotoxicology. 2012;33:1499–510.PubMedCrossRefGoogle Scholar
  20. 20.
    Song Y, Xia Z, Shen K, Zhai X. Autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter suppresses human ovarian carcinoma growth in vitro and in mice. Int J Gynecol Cancer. 2013;23:642–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Dai ZJ, Lu WF, Gao J, Kang HF, Ma YG, Zhang SQ, et al. Anti-angiogenic effect of the total flavonoids in Scutellaria barbata D. Don. BMC Complement Altern Med. 2013;13:150.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Yuan X, Zhang B, Gan L, Wang ZH, Yu BC, Liu LL, et al. Involvement of the mitochondrion-dependent and the endoplasmic reticulum stress signaling pathways in isoliquiritigenin-induced apoptosis of HeLa cell. Biomed Environ Sci. 2013;26:268–76.PubMedGoogle Scholar
  23. 23.
    Qin S, Yang C, Li S, Xu C, Zhao Y, Ren H. Smac: its role in apoptosis induction and use in lung cancer diagnosis and treatment. Cancer Lett. 2012;318:9–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Ferraro E, Pesaresi MG, De Zio D, Cencioni MT, Gortat A, Cozzolino M, et al. Apaf1 plays a pro-survival role by regulating centrosome morphology and function. J Cell Sci. 2011;124:3450–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Loureiro R, Mesquita KA, Oliveira PJ, Vega-Naredo I. Mitochondria in cancer stem cells: a target for therapy. Recent Pat Endocr Metab Immune Drug Discov. 2013;7:102–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee HH, Park C, Jeong JW, Kim MJ, Seo MJ, Kang BW, et al. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen species mediated mitochondrial death pathway. Int J Oncol. 2013;42:1036–44.PubMedGoogle Scholar
  27. 27.
    Fang XY, Chen W, Fan JT, Song R, Wang L, Gu YH, et al. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1-AKT interaction. Toxicol Appl Pharmacol. 2013;267:95–103.PubMedCrossRefGoogle Scholar
  28. 28.
    Guerrero AD, Schmitz I, Chen M, Wang J. Promotion of caspase activation by caspase-9 mediated feedback amplification of mitochondrial damage. J Clin Cell Immunol. 2012;3(3):1000126.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Platini F, Pérez-Tomás R, Ambrosio S, Tessitore L. Understanding autophagy in cell death control. Curr Pharm Des. 2010;16:101–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Roberts DL, Merrison W, MacFarlane M, Cohen GM. The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity. J Cell Biol. 2001;153:221–8.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Ng H, Smith DJ, Nagley P. Application of flow cytometry to determine differential redistribution of cytochrome c and Smac/DIABLO from mitochondria during cell death signaling. PLoS One. 2012;7:e42298.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Sun KW, Ma YY, Guan TP, Xia YJ, Shao CM, Chen LG, et al. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol. 2012;18:7166–74.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Chao Y, Shiozaki EN, Srinivasula SM, Rigotti DJ, Fairman R, Shi Y. Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol. 2005;3:e183.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Lee TK, Lee YJ, Kim DI, Kim HM, Chang YC, Kim CH. Pharmacological activity in growth inhibition and apoptosis of cultured human leiomyomal cells of tropical plant Scutellaria barbata D. Don (Lamiaceae). Environ Toxicol Pharmacol. 2006;21:70–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Li H, Huang D, Gao Z, Lv Y, Zhang L, Cui H, et al. Scutellarin inhibits cell migration by regulating production of αvβ6 integrin and E-cadherin in human tongue cancer cells. Oncol Rep. 2010;24(5):1153–60.PubMedGoogle Scholar
  37. 37.
    Cao X, Liu B, Cao W, Zhang W, Zhang F, Zhao H, et al. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells. Chin J Cancer Res. 2013;25(2):212–22.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Zhu Y, Mao Y, Chen H, Lin Y, Hu Z, Wu J, et al. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell Int. 2013;13(1):54.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Takahashi H, Chen MC, Pham H, Angst E, King JC, Park J, et al. Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells. Biochim Biophys Acta. 2011;1813(8):1465–74.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Chen K, Zhang S, Ji Y, Li J, An P, Ren H, et al. Baicalein inhibits the invasion and metastatic capabilities of hepatocellular carcinoma cells via down-regulation of the ERK pathway. PLoS One. 2013;8(9):e72927.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Dai ZJ, Gao J, Li ZF, Ji ZZ, Kang HF, Guan HT, et al. In vitro and in vivo antitumor activity of Scutellaria barbate extract on murine liver cancer. Molecules. 2011;16:4389–400.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Jie Gao
    • 1
    • 2
  • Wang-Feng Lu
    • 1
    • 3
  • Zhi-Jun Dai
    • 1
  • Shuai Lin
    • 1
  • Yang Zhao
    • 1
  • Sha Li
    • 4
  • Nuan-Nuan Zhao
    • 4
  • Xi-Jing Wang
    • 1
  • Hua-Feng Kang
    • 1
  • Xiao-Bin Ma
    • 1
  • Wang-Gang Zhang
    • 5
  1. 1.Department of OncologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.Department of NephrologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Surgical OncologyShangluo Central HospitalShangluoChina
  4. 4.Department of PharmacologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  5. 5.Department of HematologyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations