Skip to main content

Advertisement

Log in

Two DNA repair gene polymorphisms on the risk of gastrointestinal cancers: a meta-analysis

  • Review Article
  • Published:
Tumor Biology

Abstract

PARP-1 and MGMT play an important role in the DNA repair system and therefore have been implicated in human carcinogenesis. However, the association between the most studied PARP-1 rs1136410: T > C and MGMT rs12917: C > T polymorphism and risk of gastrointestinal (GI) cancers was reported with inconclusive results. Accordingly, a meta-analysis of 23 published case–control studies was conducted to assess the strength of association using crude odds ratios (ORs) with 95 % confidence intervals (CIs). Overall, the C allele of PARP-1 rs1136410: T > C polymorphism was significantly associated with increased susceptibility of GI cancers (homozygote comparison: OR = 1.43, 95 % CI 1.14–1.81; heterozygote comparison: OR = 1.18, 95 % CI 1.07–1.29; dominant model: OR = 1.23, 95 % CI 1.12–1.35; recessive model: OR = 1.30, 95 % CI 1.04–1.62; allelic comparison: OR = 1.19, 95 % CI 1.07–1.32). In the subgroup analysis, still obvious associations were found in the Asian population, gastric cancer, and high-quality studies. For MGMT rs12917: C > T polymorphism, no obvious associations were found for all genetic models overall. However, in the subgroup analysis, we found that the T allele was significantly associated with reduced colorectal cancer risk for heterozygote (OR = 0.83, 95 % CI 0.70–0.97) and dominant model (OR = 0.84, 95 % CI 0.72–0.98). In conclusion, this meta-analysis suggests that the PARP-1 rs1136410: T > C polymorphism is a susceptibility factor for GI cancers, but the variant allele of MGMT rs12917: C > T polymorphism appears to be a protective factor for colorectal cancer. Large-scale and well-designed case–control studies are necessary to validate the risk identified in the present meta-analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Haq S, Ali S, Mohammad R, Sarkar FH. The complexities of epidemiology and prevention of gastrointestinal cancers. Int J Mol Sci. 2012;13(10):12556–72. doi:10.3390/ijms131012556.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. doi:10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  4. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8. doi:10.1038/nature08467.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94. doi:10.1038/nature10760.

    Article  PubMed  CAS  Google Scholar 

  6. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomark Prev. 2002;11(12):1513–30.

    CAS  Google Scholar 

  7. Fortini P, Pascucci B, Parlanti E, D'Errico M, Simonelli V, Dogliotti E. The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie. 2003;85(11):1053–71.

    Article  PubMed  CAS  Google Scholar 

  8. Lockett KL, Hall MC, Xu J, Zheng SL, Berwick M, Chuang SC, et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res. 2004;64(17):6344–8. doi:10.1158/0008-5472.CAN-04-0338.

    Article  PubMed  CAS  Google Scholar 

  9. Tranah GJ, Bugni J, Giovannucci E, Ma J, Fuchs C, Hines L, et al. O6-methylguanine-DNA methyltransferase Leu84Phe and Ile143Val polymorphisms and risk of colorectal cancer in the Nurses' Health Study and Physicians' Health Study (United States). Cancer Causes & Control: CCC. 2006;17(5):721–31. doi:10.1007/s10552-006-0005-y.

    Article  PubMed  Google Scholar 

  10. Zhong Y, Huang Y, Huang Y, Zhang T, Ma C, Zhang S, et al. Effects of O6-methylguanine-DNA methyltransferase (MGMT) polymorphisms on cancer: a meta-analysis. Mutagenesis. 2010;25(1):83–95. doi:10.1093/mutage/gep050.

    Article  PubMed  CAS  Google Scholar 

  11. Pabalan N, Francisco-Pabalan O, Jarjanazi H, Li H, Sung L, Ozcelik H. Racial and tissue-specific cancer risk associated with PARP1 (ADPRT) Val762Ala polymorphism: a meta-analysis. Mol Biol Rep. 2012;39(12):11061–72. doi:10.1007/s11033-012-2009-x.

    Article  PubMed  CAS  Google Scholar 

  12. Wang F, Sun G, Zou Y, Fan L, Song B. Lack of association of miR-146a rs2910164 polymorphism with gastrointestinal cancers: evidence from 10206 subjects. PloS One. 2012;7(6):e39623. doi:10.1371/journal.pone.0039623.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101–29.

    Article  Google Scholar 

  14. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. doi:10.1002/sim.1186.

    Article  PubMed  Google Scholar 

  15. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  PubMed  CAS  Google Scholar 

  16. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of desease. J Natl Cancer Inst. 1959;22(4):719–48.

    PubMed  CAS  Google Scholar 

  17. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  PubMed  CAS  Google Scholar 

  18. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Hao B, Wang H, Zhou K, Li Y, Chen X, Zhou G, et al. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res. 2004;64(12):4378–84. doi:10.1158/0008-5472.CAN-04-0372.

    Article  PubMed  CAS  Google Scholar 

  20. Bigler J, Ulrich CM, Kawashima T, Whitton J, Potter JD. DNA repair polymorphisms and risk of colorectal adenomatous or hyperplastic polyps. Cancer Epidemiol Biomark Prev. 2005;14(11 Pt 1):2501–8. doi:10.1158/1055-9965.EPI-05-0270.

    Article  CAS  Google Scholar 

  21. Huang WY, Chow WH, Rothman N, Lissowska J, Llaca V, Yeager M, et al. Selected DNA repair polymorphisms and gastric cancer in Poland. Carcinogenesis. 2005;26(8):1354–9. doi:10.1093/carcin/bgi084.

    Article  PubMed  CAS  Google Scholar 

  22. Lu Y, Xu Y, Shen J, Yu R, Niu J, Guo J, et al. Study on the association between the role of polymorphisms of the O6-methylguanine-DNA methyltransferase gene and gastric cancer hereditary susceptibility. Chin J of Dis Control Prev. 2006;10(3):222–5.

    CAS  Google Scholar 

  23. Miao X, Zhang X, Zhang L, Guo Y, Hao B, Tan W, et al. Adenosine diphosphate ribosyl transferase and x-ray repair cross-complementing 1 polymorphisms in gastric cardia cancer. Gastroenterology. 2006;131(2):420–7. doi:10.1053/j.gastro.2006.05.050.

    Article  PubMed  CAS  Google Scholar 

  24. Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, et al. Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res. 2006;12(7 Pt 1):2101–8. doi:10.1158/1078-0432.CCR-05-1363.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Z, Miao XP, Tan W, Guo YL, Zhang XM, Lin DX. [Correlation of genetic polymorphisms in DNA repair genes ADPRT and XRCC1 to risk of gastric cancer]. Ai zheng = Aizheng =. Chin J Cancer. 2006;25(1):7–10.

    Google Scholar 

  26. Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, et al. Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res. 2007;67(3):1395–404. doi:10.1158/0008-5472.CAN-06-1390.

    Article  PubMed  CAS  Google Scholar 

  27. Stern MC, Conti DV, Siegmund KD, Corral R, Yuan JM, Koh WP, et al. DNA repair single-nucleotide polymorphisms in colorectal cancer and their role as modifiers of the effect of cigarette smoking and alcohol in the Singapore Chinese Health Study. Cancer Epidemiol Biomark Prev. 2007;16(11):2363–72. doi:10.1158/1055-9965.EPI-07-0268.

    Article  CAS  Google Scholar 

  28. Doecke J, Zhao ZZ, Pandeya N, Sadeghi S, Stark M, Green AC, et al. Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma. Int J Cancer. 2008;123(1):174–80. doi:10.1002/ijc.23410.

    Article  PubMed  CAS  Google Scholar 

  29. Akbari MR, Malekzadeh R, Shakeri R, Nasrollahzadeh D, Foumani M, Sun Y, et al. Candidate gene association study of esophageal squamous cell carcinoma in a high-risk region in Iran. Cancer Res. 2009;69(20):7994–8000. doi:10.1158/0008-5472.CAN-09-1149.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Zhang Q, Li Y, Li X, Zhou W, Shi B, Chen H, et al. PARP-1 Val762Ala polymorphism, CagA + H. pylori infection and risk for gastric cancer in Han Chinese population. Mol Biol Rep. 2009;36(6):1461–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kang S, Li Y, He W, Liu T, Li X, Zhou W, et al. Association between PARP-1 polymorphisms and susceptibility to gastric cancer. World J Gastroenterol. 2010;18(14):1434–41.

    CAS  Google Scholar 

  32. Brevik A, Joshi AD, Corral R, Onland-Moret NC, Siegmund KD, Le Marchand L, et al. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat. Cancer Epidemiol Biomark Prev. 2010;19(12):3167–73. doi:10.1158/1055-9965.EPI-10-0606.

    Article  CAS  Google Scholar 

  33. Palli D, Polidoro S, D'Errico M, Saieva C, Guarrera S, Calcagnile AS, et al. Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer. Mutagenesis. 2010;25(6):569–75. doi:10.1093/mutage/geq042.

    Article  PubMed  CAS  Google Scholar 

  34. Bye H, Prescott NJ, Matejcic M, Rose E, Lewis CM, Parker MI, et al. Population-specific genetic associations with oesophageal squamous cell carcinoma in South Africa. Carcinogenesis. 2011;32(12):1855–61. doi:10.1093/carcin/bgr211.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Shah MA, Shaff SM, Lone GN, Jan SM. Lack of influence of MGMT codon Leu84Phe and codon Ileu143Val polymorphisms on esophageal cancer risk in the Kashmir Valley. Asian Pacific J Cancer Prev APJCP. 2012;13(7):3047–52.

    Article  Google Scholar 

  36. Wen YY, Pan XF, Loh M, Tian Z, Yang SJ, Lv SH, et al. ADPRT Val762Ala and XRCC1 Arg194Trp polymorphisms and risk of gastric cancer in Sichuan of China. Asian Pacific J Cancer Prev APJCP. 2012;13(5):2139–44.

    Article  Google Scholar 

  37. Li Y, Li S, Wu Z, Hu F, Zhu L, Zhao X, et al. Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in a Northeast Chinese population. Med Oncol. 2013;30(2):505. doi:10.1007/s12032-013-0505-z.

    Article  PubMed  CAS  Google Scholar 

  38. Easton DF, Eeles RA. Genome-wide association studies in cancer. Hum Mol Genet. 2008;17(R2):R109–15. doi:10.1093/hmg/ddn287.

    Article  PubMed  CAS  Google Scholar 

  39. Le Marchand L. Genome-wide association studies and colorectal cancer. Surg Oncol Clin N Am. 2009;18(4):663–8. doi:10.1016/j.soc.2009.07.004.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Hosking FJ, Dobbins SE, Houlston RS. Genome-wide association studies for detecting cancer susceptibility. Br Med Bull. 2011;97:27–46. doi:10.1093/bmb/ldq038.

    Article  PubMed  Google Scholar 

  41. Seng KC, Seng CK. The success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet: EJHG. 2008;16(5):554–64. doi:10.1038/ejhg.2008.12.

    Article  PubMed  CAS  Google Scholar 

  42. Munafo MR, Flint J. Meta-analysis of genetic association studies. Trends Genet: TIG. 2004;20(9):439–44. doi:10.1016/j.tig.2004.06.014.

    Article  PubMed  CAS  Google Scholar 

  43. Masutani M, Nakagama H, Sugimura T. Poly(ADP-ribose) and carcinogenesis. Genes, Chromosomes & Cancer. 2003;38(4):339–48. doi:10.1002/gcc.10250.

    Article  CAS  Google Scholar 

  44. Dantzer F, Ame JC, Schreiber V, Nakamura J, Menissier-de Murcia J, de Murcia G. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol. 2006;409:493–510. doi:10.1016/S0076-6879(05)09029-4.

    Article  PubMed  CAS  Google Scholar 

  45. Caldecott KW. Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair. 2007;6(4):443–53. doi:10.1016/j.dnarep.2006.10.006.

    Article  PubMed  CAS  Google Scholar 

  46. Tsutsumi M, Masutani M, Nozaki T, Kusuoka O, Tsujiuchi T, Nakagama H, et al. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis. 2001;22(1):1–3.

    Article  PubMed  CAS  Google Scholar 

  47. Nozaki T, Fujihara H, Watanabe M, Tsutsumi M, Nakamoto K, Kusuoka O, et al. Parp-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci. 2003;94(6):497–500.

    Article  PubMed  CAS  Google Scholar 

  48. Bieche I, de Murcia G, Lidereau R. Poly(ADP-ribose) polymerase gene expression status and genomic instability in human breast cancer. Clin Cancer Res. 1996;2(7):1163–7.

    PubMed  CAS  Google Scholar 

  49. Ghabreau L, Roux JP, Frappart PO, Mathevet P, Patricot LM, Mokni M, et al. Poly(ADP-ribose) polymerase-1, a novel partner of progesterone receptors in endometrial cancer and its precursors. Int J Cancer. 2004;109(3):317–21. doi:10.1002/ijc.11731.

    Article  PubMed  CAS  Google Scholar 

  50. Brustmann H. Poly(adenosine diphosphate-ribose) polymerase expression in serous ovarian carcinoma: correlation with p53, MIB-1, and outcome. Int J Gynecol Pathol. 2007;26(2):147–53. doi:10.1097/01.pgp.0000235064.93182.ec.

    PubMed  Google Scholar 

  51. Esteller M, Herman JG. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene. 2004;23(1):1–8. doi:10.1038/sj.onc.1207316.

    Article  PubMed  CAS  Google Scholar 

  52. Ritchey JD, Huang WY, Chokkalingam AP, Gao YT, Deng J, Levine P, et al. Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomark Prev. 2005;14(7):1703–9. doi:10.1158/1055-9965.EPI-04-0809.

    Article  CAS  Google Scholar 

  53. Han J, Tranah GJ, Hankinson SE, Samson LD, Hunter DJ. Polymorphisms in O6-methylguanine DNA methyltransferase and breast cancer risk. Pharmacogenet Genomics. 2006;16(7):469–74. doi:10.1097/01.fpc.0000215065.21718.4c.

    Article  PubMed  CAS  Google Scholar 

  54. Huang WY, Olshan AF, Schwartz SM, Berndt SI, Chen C, Llaca V, et al. Selected genetic polymorphisms in MGMT, XRCC1, XPD, and XRCC3 and risk of head and neck cancer: a pooled analysis. Cancer Epidemiol Biomark Prev. 2005;14(7):1747–53. doi:10.1158/1055-9965.EPI-05-0162.

    Article  CAS  Google Scholar 

  55. Inoue R, Abe M, Nakabeppu Y, Sekiguchi M, Mori T, Suzuki T. Characterization of human polymorphic DNA repair methyltransferase. Pharmacogenetics. 2000;10(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  56. Shima K, Morikawa T, Baba Y, Nosho K, Suzuki M, Yamauchi M, et al. MGMT promoter methylation, loss of expression and prognosis in 855 colorectal cancers. Cancer Causes & Control: CCC. 2011;22(2):301–9. doi:10.1007/s10552-010-9698-z.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Sanderson S, Tatt ID, Higgins JP. Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: a systematic review and annotated bibliography. Int J Epidemiol. 2007;36(3):666–76. doi:10.1093/ije/dym018.

    Article  PubMed  Google Scholar 

  58. Yang Z, Zhang XF, Liu HX, Hao YS, Zhao CL. MTHFR C677T polymorphism and colorectal cancer risk in Asians, a meta-analysis of 21 studies. Asian Pacific J Cancer Prev: APJCP. 2012;13(4):1203–8.

    Article  Google Scholar 

  59. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. doi:10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (no. 81171979).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Additional information

Yue Hu and Min Zhou contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Zhou, M., Li, K. et al. Two DNA repair gene polymorphisms on the risk of gastrointestinal cancers: a meta-analysis. Tumor Biol. 35, 1715–1725 (2014). https://doi.org/10.1007/s13277-013-1320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1320-z

Keywords

Navigation