Tumor Biology

, Volume 35, Issue 3, pp 2303–2311 | Cite as

TP53 alterations and colorectal cancer predisposition in south Indian population: A case-control study

  • Gopi Krishna Singamsetty
  • Sravanthi Malempati
  • Srichandana Bhogadhi
  • Ravinder Kondreddy
  • Suresh Govatati
  • Naveen Kumar Tangudu
  • Sowdamani Govatati
  • Anil Kumar kuraganti
  • Manjula Bhanoori
  • Kondaiah Kassetty
Research Article


The objective of the present study was to investigate the association between TP53 gene single nucleotide polymorphisms (SNPs) and colorectal cancer (CRC) predisposition in south Indian population and to evaluate the role of TP53 expression in the pathophysiology of CRC. A genetic association study was conducted in 103 CRC cases and 107 controls of south Indian origin. We genotyped ten selected TP53 SNPs by polymerase chain reaction-sequencing analysis. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D′) for pairwise linkage disequilibrium (LD) were assessed by Haploview Software. In addition, to better understand the role of TP53 in the pathophysiology of CRC, the expression pattern was evaluated in analogous tumor and normal tissues from 23 CRC patients by Western blot analysis. The frequencies of Pro72Pro (P = 0.0033) genotype and Ser47/Pro72 (P = 0.00171) haplotype were significantly higher in patients as compared to controls. Strong LD was observed between codon 47 and 72 in cases (D′ = 0.32) as compared to controls (D′ = 0.21). The polymorphism was not observe at the remaining eight SNPs loci analyzed. Furthermore, increased TP53 expression was observed in tumor tissue than in analogous normal tissue of CRC patients. Interestingly, advanced stage tumors showed more elevated TP53 expression compared to early stage tumors. In conclusion, the TP53 Pro72Pro genotype and Ser47/Pro72 haplotype has an increased risk for CRC predisposition in south Indian population. In addition, elevated TP53 expression appears to be useful prognostic marker for CRC.


TP53 Colorectal cancer SNP Haplotype Expression South Indian population 



We deeply thank all the medical staff and study subjects involved in this study.

Conflicts of interest



  1. 1.
    Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59:366–78.PubMedCrossRefGoogle Scholar
  2. 2.
    de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRefGoogle Scholar
  4. 4.
    Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9:95–107.PubMedCrossRefGoogle Scholar
  6. 6.
    Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, et al. Mutations and polymorphisms in TP53 gene—an overview on the role in colorectal Cancer. Mutagenesis. 2012;27:211–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33:357–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Soussi T, Klas GW. Shaping 0Cancer Cell. 2007;12:303–12.CrossRefGoogle Scholar
  10. 10.
    Felley-Bosco E, Weston A, Cawley HM, Bennett WP, Harris CC. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet. 1993;53:752–9.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Li X, Dumont P, Della PA, Shetler C, Murphy ME. The codon 47 polymorphism in p53 is functionally significant. J Biol Chem. 2005;280:24245–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Govatati S, Chakravarty B, Deenadayal M, Kodati VL, Latha M, Shivaji S, et al. p53 and risk of endometriosis in Indian women. Genet Test Mol Biomarkers. 2012;16(8):865–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Sameer AS, Shah ZA, Syeed N, Banday MZ, Bashir SM, Bhat BA, et al. TP53 Pro47Ser and Arg72Pro polymorphisms and colorectal cancer predisposition in an ethnic Kashmiri population. Genet Mol Res. 2010;9:651–60.PubMedCrossRefGoogle Scholar
  14. 14.
    International Union Against Cancer (UICC). In: Hermaek P, Hutter RVP, Sobin LH, editors. TNM classification of malignant tumours. Berlin: Springer-Verlag; 1998.Google Scholar
  15. 15.
    Govatati S, Tipirisetti NR, Perugu S, Kodati VL, Deenadayal M, Vishnupriya S, et al. Mitochondrial genome variations in advanced stage endometriosis: a study in South Indian population. PLoS ONE. 2012;7(7):e40668.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Govatati S, Deenadayal M, Shivaji S, Bhanoori M. Mitochondrial d-loop alterations are associated with endometriosis. Fertil Steril. 2013;99(7):1980–6.e9.PubMedCrossRefGoogle Scholar
  17. 17.
    Govatati S, Tangudu NK, Deenadayal M, Chakravarty B, Shivaji S, Bhanoori M. Association of E-cadherin single nucleotide polymorphisms with the increased risk of Endometriosis in Indian women. Mol Hum Reprod. 2012;18(5):280–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, et al. Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer. 2008;8:32.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sakamuro D, Sabbatini P, White E, Prendergast GC. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene. 1997;15:887–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nat Cell Biol. 2004;6:443–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Gallego MG, Acenero MJ, Ortega S, Delgado AA, Cantero JL. Prognostic influence of p53 nuclear overexpression in colorectal carcinoma. Dis Colon Rectum. 2000;43:971–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Lanza Jr G, Maestri I, Dubini A, Gafa R, Santini A, Ferretti S, et al. p53 expression in colorectal cancer: relation to tumour type, DNA ploidy pattern and short-term survival. Am J Clin Pathol. 1996;105:604–12.PubMedGoogle Scholar
  24. 24.
    Kressner U, Lindmark G, Gerdin B, Pahlman L, Glimelius B. Immunohistological p53 staining is of limited value in the staging and prognostic prediction of colorectal cancer. Anticancer Res. 1996;16:951–7.PubMedGoogle Scholar
  25. 25.
    Kressner U, Inganas M, Byding S, Blikstad I, Pahlman L, Glimelius B, et al. Prognostic value of p53 genetic changes in colorectal cancer. J Clin Oncol. 1999;17:593–9.PubMedGoogle Scholar
  26. 26.
    Bai L, Zhu WG. p53: structure, function and therapeutic applications. J Cancer Mol. 2006;2(4):141–53.Google Scholar
  27. 27.
    Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002;2:594–604.PubMedCrossRefGoogle Scholar
  28. 28.
    Sjalander A, Birgander R, Athlin L, Stenling R, Rutegard J, Beckman L, et al. P53 germ line haplotypes associated with increased risk for colorectal cancer. Carcinogenesis. 1995;16:1461–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Stock RS, Boltze C, Peters B, Szibor R, Landt O, Meyer F, et al. Selective loss of codon 72 proline p53 and frequent mutational inactivation of the retained arginine allele in colorectal cancer. Neoplasia. 2004;6:529–35.CrossRefGoogle Scholar
  30. 30.
    Gemignani F, Moreno V, Landi S, Moullan N, Chabrier A, Gutiérrez-Enríquez S, et al. A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene. 2004;23:1954–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Sotamaa K, Liyanarachchi S, Mecklin JP, Jarvinen H, Aaltonen LA, Peltomaki P, et al. p53 codon 72 and MDM2 SNP309 polymorphisms and age of colorectal cancer onset in Lynch syndrome. Clin Cancer Res. 2005;11:6840–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Buyru N, Tezol A, Dalay N. p53 intronic G13964C variant in colon cancer and its association with HPV. Anticancer Res. 2005;25:2767–9.PubMedGoogle Scholar
  33. 33.
    Kruger S, Bier A, Engel C, Mangold E, Pagenstecher C, von Knebel Doeberitz M, et al. The p53 codon 72 variation is associated with the age of onset of hereditary non-polyposis colorectal cancer (HNPCC). J Med Genet. 2005;42:769–73.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Perfumo C, Bonelli L, Menichini P, Inga A, Gismondi V, Ciferri E, et al. Increased risk of colorectal adenomas in Italian subjects carrying the p53 PIN3 A2-Pro72 haplotype. Digestion. 2006;74:228–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Perez LO, Abba MC, Dulout FN, Golijow CD. Evaluation of p53 codon 72 polymorphism in adenocarcinomas of the colon and rectum in La Plata, Argentina. World J Gastroenterol. 2006;12:1426–9.PubMedGoogle Scholar
  36. 36.
    Koushik A, Tranah GJ, Ma J, Stampfer MJ, Sesso HD, Fuchs CS, et al. p53 Arg72Pro polymorphism and risk of colorectal adenoma and cancer. Int J Cancer. 2006;119:1863–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Goodman JE, Mechanic LE, Luke BT, Ambs S, Chanock S, Harris CC. Exploring SNP-SNP interactions and colon cancer risk using polymorphism interaction analysis. Int J Cancer. 2006;118:1790–7.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Zhu ZZ, Wang AZ, Jia HR, Jin XX, He XL, Hou LF, et al. Association of the TP53 codon 72 polymorphism with colorectal cancer in a Chinese population. Jpn J Clin Oncol. 2007;37:385–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Tan XL, Nieters A, Hoffmeister M, Beckmann L, Brenner H, Chang-Claude J. Genetic polymorphisms in TP53, nonsteroidal anti-inflammatory drugs and the risk of colorectal cancer: evidence for gene–environment interaction? Pharmacogenet Genomics. 2007;17:639–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Mammano E, Belluco C, Bonafe M, Olivieri F, Mugianesi E, Barbi C, et al. Association of p53 polymorphisms and colorectal cancer: modulation of risk and progression. Eur J Surg Oncol. 2009;35:415–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Dakouras A, Nikiteas N, Papadakis E, Perakis M, Valis D, Rallis G, et al. P53Arg72 homozygosity and its increased incidence in left-sided sporadic colorectal adenocarcinomas, in a Greek–Caucasian population. Anticancer Res. 2008;28:1039–43.PubMedGoogle Scholar
  42. 42.
    Grunhage F, Jungck M, Lamberti C, Berg C, Becker U, Schulte-Witte H, et al. Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes. Int J Colorectal Dis. 2008;23:147–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Csejtei A, Tibold A, Vargas Z, Kola K, Ember A, Orsos Z, et al. GSTM, GSTT and p53 polymorphisms as modifiers of clinical outcome in colorectal cancer. Anticancer Res. 2008;28:1917–22.PubMedGoogle Scholar
  44. 44.
    Polakova V, Pardini B, Naccarati A, Landi S, Slyskova J, Novotny J, et al. Genotype and haplotype analysis of cell cycle genes in sporadic colorectal cancer in the Czech Republic. Hum Mutat. 2009;30:661–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Cao Z, Song JH, Park YK, Maeng EJ, Nam SW, Lee JY, et al. The p53 codon 72 polymorphism and susceptibility to colorectal cancer in Korean patients. Neoplasma. 2009;56:114–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Joshi AM, Budhathoki S, Ohnaka K, Mibu R, Tanaka M, Kakeji Y, et al. TP53 R72P and MDM2 SNP309 polymorphisms and colorectal cancer risk: the Fukuoka colorectal cancer study. Jpn J Clin Oncol. 2011;41:232–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Song HR, Kweon SS, Kim HN, et al. p53 codon 72 polymorphism in patients with gastric and colorectal cancer in a Korean population. Gastric Cancer. 2011;14:242–7.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Gopi Krishna Singamsetty
    • 1
  • Sravanthi Malempati
    • 2
  • Srichandana Bhogadhi
    • 3
  • Ravinder Kondreddy
    • 4
  • Suresh Govatati
    • 5
  • Naveen Kumar Tangudu
    • 4
  • Sowdamani Govatati
    • 6
  • Anil Kumar kuraganti
    • 1
  • Manjula Bhanoori
    • 5
  • Kondaiah Kassetty
    • 1
  1. 1.Department of ZoologyAcharya Nagarjuna UniversityGunturIndia
  2. 2.Department of BiochemistryKrishna UniversityNuzvidIndia
  3. 3.Department of Biotechnology, Montessori Mahila KalasalaAcharya Nagarjuna UniversityVijayawadaIndia
  4. 4.Centre for Cellular and Molecular Biology (CCMB)HyderabadIndia
  5. 5.Department of BiochemistryOsmania UniversityHyderabadIndia
  6. 6.Department of Zoology, RC CollegeAcharya Nagarjuna UniversityGunturIndia

Personalised recommendations