Advertisement

Tumor Biology

, Volume 35, Issue 3, pp 2009–2015 | Cite as

Significant associations between X-ray repair cross-complementing group 3 genetic polymorphisms and thyroid cancer risk

  • Xiao-Long Yu
  • Hu Liu
  • Bin Wang
  • Zheng-Ju Fu
  • Ying Yuan
  • Sheng-Li Yan
  • Wen-Juan Zhao
  • Yan-Gang Wang
  • Jianming Cai
Research Article

Abstract

Polymorphisms in X-ray cross-complementing group 3 (XRCC3) are proposed to be associated with cancer susceptibility, but previous studies on the associations between XRCC3 polymorphisms and thyroid cancer are controversial. We performed a systemic review and meta-analysis to investigate the associations of XRCC3 polymorphisms with thyroid cancer risk. We used odds ratio (OR) with 95 % confidence interval (95%CI) to assess the associations. For XRCC3 C241T polymorphism, meta-analysis of total eligible studies showed that there was no association between XRCC3 C241T polymorphism and thyroid cancer risk, but subgroup analysis in Caucasians showed that there was a significant association between XRCC3 C241T polymorphism and thyroid cancer risk (T versus C: OR = 1.30, 95%CI 1.05–1.62, P = 0.01; TT versus CC: OR = 1.74, 95%CI 1.13–2.70, P = 0.01; TT versus CC/CT: OR = 1.74, 95%CI 1.16–2.60, P = 0.007). For XRCC3 A17893G polymorphism, meta-analysis of total eligible studies showed that there was an obvious association between XRCC3 A17893G polymorphism and thyroid cancer risk (GG versus AA/AG: OR = 0.57, 95%CI 0.35–0.93, P = 0.02), but subgroup analysis by ethnicity only identify the significant association in Asians. In summary, the meta-analysis suggests that there are significant associations of XRCC3 polymorphisms with thyroid cancer risk. Besides, more studies with large sample sizes are needed to further assess the associations above.

Keywords

Thyroid cancer X-ray repair cross-complementing group 3 Polymorphisms Meta-analysis 

Notes

Conflicts of interest

None

References

  1. 1.
    Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Carlomagno F, Santoro M. Thyroid cancer in 2010: a roadmap for targeted therapies. Nat Rev Endocrinol. 2011;7:65–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Gild ML, Bullock M, Robinson BG, Clifton-Bligh R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat Rev Endocrinol. 2011;7:617–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Imaizumi M, Usa T, Tominaga T, Neriishi K, Akahoshi M, Nakashima E, et al. Radiation dose–response relationships for thyroid nodules and autoimmune thyroid diseases in hiroshima and nagasaki atomic bomb survivors 55–58 years after radiation exposure. JAMA. 2006;295:1011–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in european populations. Nat Genet. 2009;41:460–4.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Perez L, Schiavi F, Leskela S, et al. The variant rs1867277 in foxe1 gene confers thyroid cancer susceptibility through the recruitment of usf1/usf2 transcription factors. PLoS Genet. 2009;5:e1000637.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12:587–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Price BD, D’Andrea AD. Chromatin remodeling at DNA double-strand breaks. Cell. 2013;152:1344–54.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM, et al. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet. 2002;11:1399–407.PubMedCrossRefGoogle Scholar
  12. 12.
    Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, et al. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res. 2013;179:383–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Kasparek TR, Humphrey TC. DNA double-strand break repair pathways, chromosomal rearrangements and cancer. Semin Cell Dev Biol. 2011;22:886–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Manuguerra M, Saletta F, Karagas MR, Berwick M, Veglia F, Vineis P, et al. Xrcc3 and xpd/ercc2 single nucleotide polymorphisms and the risk of cancer: a huge review. Am J Epidemiol. 2006;164:297–302.PubMedCrossRefGoogle Scholar
  16. 16.
    Sturgis EM, Zhao C, Zheng R, Wei Q. Radiation response genotype and risk of differentiated thyroid cancer: a case–control analysis. Laryngoscope. 2005;115:938–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Ni HX, Bian JC, Shen Q, Tang HW, Zhu QX, Wu Y. Genetic polymorphisms of xrcc3 and susceptibility of papillary thyroid carcinoma. Fudan Univ J Med Sci. 2006;33:147–52.Google Scholar
  18. 18.
    Siraj AK, Al-Rasheed M, Ibrahim M, Siddiqui K, Al-Dayel F, Al-Sanea O, et al. Rad52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in middle eastern population. J Endocrinol Investig. 2008;31:893–9.CrossRefGoogle Scholar
  19. 19.
    Akulevich NM, Saenko VA, Rogounovitch TI, Drozd VM, Lushnikov EF, Ivanov VK, et al. Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma. Endocrinol Relat Cancer. 2009;16:491–503.CrossRefGoogle Scholar
  20. 20.
    Bastos HN, Antao MR, Silva SN, Azevedo AP, Manita I, Teixeira V, et al. Association of polymorphisms in genes of the homologous recombination DNA repair pathway and thyroid cancer risk. Thyroid. 2009;19:1067–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia-Quispes WA, Perez-Machado G, Akdi A, Pastor S, Galofre P, Biarnes F, et al. Association studies of ogg1, xrcc1, xrcc2 and xrcc3 polymorphisms with differentiated thyroid cancer. Mutat Res. 2011;709–710:67–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRefGoogle Scholar
  23. 23.
    Higgins J, Thompson SG. Quantifying heterogeneity in a meta‐analysis. Stat Med. 2002;21:1539–58.PubMedCrossRefGoogle Scholar
  24. 24.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMedGoogle Scholar
  25. 25.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  • Xiao-Long Yu
    • 1
  • Hu Liu
    • 2
  • Bin Wang
    • 1
  • Zheng-Ju Fu
    • 1
  • Ying Yuan
    • 1
  • Sheng-Li Yan
    • 1
  • Wen-Juan Zhao
    • 1
  • Yan-Gang Wang
    • 1
  • Jianming Cai
    • 2
  1. 1.Departments of Endocrinology, the Affiliated Hospital of Medical CollegeQingdao UniversityQingdaoChina
  2. 2.Department of Radiation Medicine, Faculty of Naval MedicineSecond Military Medical UniversityShanghaiChina

Personalised recommendations