Advertisement

Tumor Biology

, Volume 35, Issue 3, pp 1973–1983 | Cite as

Positive association between lymphotoxin-alpha variation rs909253 and cancer risk: a meta-analysis based on 36 case–control studies

  • Xi Yu
  • Yi Huang
  • Changhong Li
  • Hailian Yang
  • Caide Lu
  • Shiwei Duan
Research Article

Abstract

Lymphotoxin-alpha (LTA) polymorphism rs909253 has been reported to be a risk factor for cancers, but some results are inconsistent. To establish a more conclusive association, we performed a meta-analysis of this variant with cancers. A systematic search was performed for informative case–control studies of rs909253 with cancers among literature databases, including PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang Chinese Periodical Database. After a comprehensive filtration procedure, 36 publications involved with 35,677 participants were selected for the current meta-analysis. Stratified factors, such as cancer type, populations, and source of control, were used for a better interpretation of this variant. Minimal heterogeneity was shown in the current meta-analysis (I 2 = 0.0 %, P = 0.48). Our results show a significant association of rs909253 and cancer risk (odds ratio (OR) = 1.12, P (z) < 0.001). In the subgroup analysis, significant association of rs909253 was found in adenocarcinoma (OR = 1.16, P (z) < 0.001) and hematological malignancy (OR = 1.10, P (z) < 0.001). Our meta-analyses established a significant association of rs909253 with cancer risk among multiple populations including North Americans, Asians, and Europeans.

Keywords

Lymphotoxin-alpha Cancer Polymorphism Meta-analysis 

Abbreviations

HWE

Hardy–Weinberg equilibrium

LTA

Lymphotoxin-alpha

TGCT

Testicular germ cell tumor

Notes

Acknowledgments

The research was supported by grants from the National Natural Science Foundation of China (31100919, 81371469), Natural Science Foundation of Zhejiang Province (LR13H020003), K. C. Wong Magna Fund in Ningbo University, Ningbo Social Development Research Projects (2012C50032), Scientific Innovation Team Project of Ningbo (2011B82014), and Advanced Key Scientific and Technological Programs of Ningbo (2011C51005).

Conflicts of interest

None

References

  1. 1.
    Kimman M, Norman R, Jan S, Kingston D, Woodward M. The burden of cancer in member countries of the Association of Southeast Asian Nations (ASEAN). Asian Pac J Cancer Prev. 2012;13:411–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Weiderpass E. Lifestyle and cancer risk. J Prev Med Public Health. 2010;43:459–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Bredberg A. Cancer: more of polygenic disease and less of multiple mutations? A quantitative viewpoint. Cancer. 2011;117:440–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Ziogas D, Roukos DH. Genetics and personal genomics for personalized breast cancer surgery: progress and challenges in research and clinical practice. Ann Surg Oncol. 2009;16:1771–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013;8:277–302.PubMedCrossRefGoogle Scholar
  7. 7.
    Taguchi A, Hanash SM. Unleashing the power of proteomics to develop blood-based cancer markers. Clin Chem. 2012;59(1):119–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Wilkinson E. Preimplantation genetic diagnosis for mutated BRCA genes. Lancet Oncol. 2012;13:e331.PubMedCrossRefGoogle Scholar
  9. 9.
    Quinn GP, Pal T, Murphy D, Vadaparampil ST, Kumar A. High-risk consumers' perceptions of preimplantation genetic diagnosis for hereditary cancers: a systematic review and meta-analysis. Genet Med. 2012;14:191–200.PubMedCrossRefGoogle Scholar
  10. 10.
    Hurley K, Rubin LR, Werner-Lin A, Sagi M, Kemel Y, Stern R, et al. Incorporating information regarding preimplantation genetic diagnosis into discussions concerning testing and risk management for BRCA1/2 mutations: a qualitative study of patient preferences. Cancer. 2012;118:6270–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao F, Chen X, Meng T, Hao B, Zhang Z, Zhang G. Genetic polymorphisms in the osteopontin promoter increases the risk of distance metastasis and death in Chinese patients with gastric cancer. BMC Cancer. 2012;12:477.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Zhang K, Zhou B, Wang Y, Rao L, Zhang L. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. Eur J Cancer. 2013;49:946–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Ruiz-Narvaez EA, Rosenberg L, Yao S, Rotimi CN, Cupples LA, Bandera EV, et al. Fine-mapping of the 6q25 locus identifies a novel SNP associated with breast cancer risk in African American women. Carcinogenesis. 2012;34(2):287–91.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Snijders AM, Marchetti F, Bhatnagar S, Duru N, Han J, Hu Z, et al. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility. PLoS One. 2012;7:e45394.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fernberg P, Chang ET, Duvefelt K, Hjalgrim H, Eloranta S, Sorensen KM, et al. Genetic variation in chromosomal translocation breakpoint and immune function genes and risk of non-Hodgkin lymphoma. Cancer Causes Control. 2010;21:759–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Jim HS, Park JY, Permuth-Wey J, Rincon MA, Phillips KM, Small BJ, et al. Genetic predictors of fatigue in prostate cancer patients treated with androgen deprivation therapy: preliminary findings. Brain Behav Immun. 2012;26:1030–6.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gangwar R, Pandey S, Mittal RD. Association of interferon-gamma +874A polymorphism with the risk of developing cervical cancer in north-Indian population. BJOG. 2009;116:1671–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Skibola CF, Bracci PM, Nieters A, Brooks-Wilson A, de Sanjose S, Hughes AM, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) polymorphisms and risk of non-Hodgkin lymphoma in the InterLymph Consortium. Am J Epidemiol. 2010;171:267–76.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gaudet MM, Egan KM, Lissowska J, Newcomb PA, Brinton LA, Titus-Ernstoff L, et al. Genetic variation in tumor necrosis factor and lymphotoxin-alpha (TNF-LTA) and breast cancer risk. Hum Genet. 2007;121:483–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Karakus N, Kara N, Ulusoy AN, Ozaslan C, Bek Y. Tumor necrosis factor alpha and beta and interferon gamma gene polymorphisms in Turkish breast cancer patients. DNA Cell Biol. 2011;30:371–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Koenen RR, Weber C. Chemokines: established and novel targets in atherosclerosis. EMBO Mol Med. 2011;3:713–25.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest. 2007;117:60–9.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wang SS, Purdue MP, Cerhan JR, Zheng T, Menashe I, Armstrong BK, et al. Common gene variants in the tumor necrosis factor (TNF) and TNF receptor superfamilies and NF-kB transcription factors and non-Hodgkin lymphoma risk. PLoS One. 2009;4:e5360.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Pooja S, Francis A, Bid HK, Kumar S, Rajender S, Ramalingam K, et al. Role of ethnic variations in TNF-alpha and TNF-beta polymorphisms and risk of breast cancer in India. Breast Cancer Res Treat. 2011;126:739–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobs EJ, Hsing AW, Bain EB, Stevens VL, Wang Y, Chen J, et al. Polymorphisms in angiogenesis-related genes and prostate cancer. Cancer Epidemiol Biomarkers Prev. 2008;17:972–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang L, Wu G, Herrle F, Niedergethmann M, Keese M. Single nucleotide polymorphisms of genes for EGF, TGF-beta and TNF-alpha in patients with pancreatic carcinoma. Cancer Genomics Proteomics. 2012;9:287–95.PubMedGoogle Scholar
  27. 27.
    Zhang Y, Wang MY, He J, Wang JC, Yang YJ, Jin L, et al. Tumor necrosis factor-alpha induced protein 8 polymorphism and risk of non-Hodgkin's lymphoma in a Chinese population: a case–control study. PLoS One. 2012;7:e37846.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Barbisan G, Perez LO, Contreras A, Golijow CD. TNF-alpha and IL-10 promoter polymorphisms, HPV infection, and cervical cancer risk. Tumour Biol. 2012;33:1549–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Messer G, Spengler U, Jung MC, Honold G, Blomer K, Pape GR, et al. Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF-beta gene correlates with a variant amino acid in position 26 and a reduced level of TNF-beta production. J Exp Med. 1991;173:209–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakayama T, Soma M, Sato N, Haketa A, Kosuge K, Aoi N, et al. An association study in essential hypertension using functional polymorphisms in lymphotoxin-alpha gene. Am J Hypertens. 2004;17:1045–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Takei K, Ikeda S, Arai T, Tanaka N, Muramatsu M, Sawabe M. Lymphotoxin-alpha polymorphisms and presence of cancer in 1,536 consecutive autopsy cases. BMC Cancer. 2008;8:235.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Partida-Rodriguez O, Torres J, Flores-Luna L, Camorlinga M, Nieves-Ramirez M, Lazcano E, et al. Polymorphisms in TNF and HSP-70 show a significant association with gastric cancer and duodenal ulcer. Int J Cancer. 2010;126:1861–8.PubMedGoogle Scholar
  33. 33.
    Lu R, Dou X, Gao X, Zhang J, Ni J, Guo L. A functional polymorphism of lymphotoxin-alpha (LTA) gene rs909253 is associated with gastric cancer risk in an Asian population. Cancer Epidemiol. 2012;36(6):e380–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Rausch SM, Gonzalez BD, Clark MM, Patten C, Felten S, Liu H, et al. SNPs in PTGS2 and LTA predict pain and quality of life in long term lung cancer survivors. Lung Cancer. 2012;77:217–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Nieves-Ramirez ME, Partida-Rodriguez O, Alegre-Crespo PE, Tapia-Lugo Mdel C, Perez-Rodriguez ME. Characterization of single-nucleotide polymorphisms in the tumor necrosis factor alpha promoter region and in lymphotoxin alpha in squamous intraepithelial lesions, precursors of cervical cancer. Transl Oncol. 2011;4:336–44.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Cruz-Olivo F, Garcia-Elorriaga G, Gonzalez-Bonilla C, Del Rey-Pineda G, Mancilla-Ramirez J. Tumor necrosis factor −308 and lymphotoxin +252 polymorphisms in Mexican children with Kawasaki disease and coronary aneurysms. Arch Med Res. 2011;42:602–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Suzuki G, Cullings H, Fujiwara S, Matsuura S, Kishi T, Ohishi W, et al. LTA 252GG and GA genotypes are associated with diffuse-type noncardia gastric cancer risk in the Japanese population. Helicobacter. 2009;14:571–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou P, Huang W, Chu X, Du LF, Li JP, Zhang C. The lymphotoxin-alpha 252A>G polymorphism and breast cancer: a meta-analysis. Asian Pac J Cancer Prev. 2012;13:1949–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Scola N, Wieland U, Silling S, Altmeyer P, Stucker M, Kreuter A. Prevalence of human polyomaviruses in common and rare types of non-Merkel cell carcinoma skin cancer. Br J Dermatol. 2012;167:1315–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Rothman N, Skibola CF, Wang SS, Morgan G, Lan Q, Smith MT, et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol. 2006;7:27–38.PubMedCrossRefGoogle Scholar
  41. 41.
    He B, Pan Y, Xu Y, Nie Z, Chen L, Gu L, et al. Increased risk for gastric cancer in carriers of the lymphotoxin-alpha +252G variant infected by Helicobacter pylori. Genet Test Mol Biomarkers. 2012;16:9–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Yri OE, Ekstrom PO, Hilden V, Gaudernack G, Liestol K, Smeland EB, et al. Influence of polymorphisms in genes encoding immunoregulatory proteins and metabolizing enzymes on susceptibility and outcome in patients with diffuse large B-cell lymphoma treated with rituximab. Leuk Lymphoma. 2013;54(10):2205–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Purdue MP, Sakoda LC, Graubard BI, Welch R, Chanock SJ, Sesterhenn IA, et al. A case–control investigation of immune function gene polymorphisms and risk of testicular germ cell tumors. Cancer Epidemiol Biomarkers Prev. 2007;16:77–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Aissani B, Ogwaro KM, Shrestha S, Tang J, Breen EC, Wong HL, et al. The major histocompatibility complex conserved extended haplotype 8.1 in AIDS-related non-Hodgkin lymphoma. J Acquir Immune Defic Syndr. 2009;52:170–9.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Hosgood 3rd HD, Au WY, Kim HN, Liu J, Hu W, Tse J, et al. IL10 and TNF variants and risk of non-Hodgkin lymphoma among three Asian populations. Int J Hematol. 2013;97:793–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Xiao H, Li C, Jiang Y, Li R, Xia B. The relationship among IL-10, TNF gene polymorphisms, Helicobacter pylori infection and gastroduodenal diseases in Hubei Han ethnic. Zhonghua Nei Ke Za Zhi. 2009;48:552–6.PubMedGoogle Scholar
  47. 47.
    Yang JJ, Ko KP, Cho LY, Shin A, Gwack J, Chang SH, et al. The role of TNF genetic variants and the interaction with cigarette smoking for gastric cancer risk: a nested case–control study. BMC Cancer. 2009;9:238.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Kohaar I, Tiwari P, Kumar R, Nasare V, Thakur N, Das BC, et al. Association of single nucleotide polymorphisms (SNPs) in TNF-LTA locus with breast cancer risk in Indian population. Breast Cancer Res Treat. 2009;114:347–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Sharma S, Ghosh B, Sharma SK. Association of TNF polymorphisms with sarcoidosis, its prognosis and tumour necrosis factor (TNF)-alpha levels in Asian Indians. Clin Exp Immunol. 2008;151:251–9.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Sava GP, Speedy HE, Houlston RS. Candidate gene association studies and risk of chronic lymphocytic leukemia: a systematic review and meta-analysis. Leuk Lymphoma. 2013. doi: 10.3109/10428194.2013.800197.PubMedGoogle Scholar
  51. 51.
    Cerhan JR, Liu-Mares W, Fredericksen ZS, Novak AJ, Cunningham JM, Kay NE, et al. Genetic variation in tumor necrosis factor and the nuclear factor-kappaB canonical pathway and risk of non-Hodgkin's lymphoma. Cancer Epidemiol Biomarkers Prev. 2008;17:3161–9.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Garcia-Gonzalez MA, Aisa MA, Strunk M, Benito R, Piazuelo E, Jimenez P, et al. Relevance of IL-1 and TNF gene polymorphisms on interleukin-1beta and tumor necrosis factor-alpha gastric mucosal production. Hum Immunol. 2009;70:935–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Mahajan R, El-Omar EM, Lissowska J, Grillo P, Rabkin CS, Baccarelli A, et al. Genetic variants in T helper cell type 1, 2 and 3 pathways and gastric cancer risk in a Polish population. Jpn J Clin Oncol. 2008;38:626–33.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ennas MG, Moore PS, Zucca M, Angelucci E, Cabras MG, Melis M, et al. Interleukin-1B (IL1B) and interleukin-6 (IL6) gene polymorphisms are associated with risk of chronic lymphocytic leukaemia. Hematol Oncol. 2008;26:98–103.PubMedCrossRefGoogle Scholar
  55. 55.
    Crusius JB, Canzian F, Capella G, Pena AS, Pera G, Sala N, et al. Cytokine gene polymorphisms and the risk of adenocarcinoma of the stomach in the European prospective investigation into cancer and nutrition (EPIC-EURGAST). Ann Oncol. 2008;19:1894–902.PubMedCrossRefGoogle Scholar
  56. 56.
    Kádár K, Kovacs M, Karadi I, Melegh B, Pocsai Z, Mikala G, et al. Polymorphisms of TNF-alpha and LT-alpha genes in multiple myeloma. Leuk Res. 2008;32:1499–504.PubMedCrossRefGoogle Scholar
  57. 57.
    Tóth EK, Kocsis J, Madaras B, Biro A, Pocsai Z, Fust G, et al. The 8.1 ancestral MHC haplotype is strongly associated with colorectal cancer risk. Int J Cancer. 2007;121:1744–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Garcia-Gonzalez MA, Lanas A, Quintero E, Nicolas D, Parra-Blanco A, Strunk M, et al. Gastric cancer susceptibility is not linked to pro-and anti-inflammatory cytokine gene polymorphisms in whites: a Nationwide Multicenter Study in Spain. Am J Gastroenterol. 2007;102:1878–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Gunter MJ, Canzian F, Landi S, Chanock SJ, Sinha R, Rothman N. Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1126–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Tao JH, Zou YF, Feng XL, Li J, Wang F, Pan FM, et al. Meta-analysis of TYK2 gene polymorphisms association with susceptibility to autoimmune and inflammatory diseases. Mol Biol Rep. 2011;38:4663–72.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhou J, Huang Y, Huang RS, Wang F, Xu L, Le Y, et al. A case–control study provides evidence of association for a common SNP rs974819 in PDGFD to coronary heart disease and suggests a sex-dependent effect. Thromb Res. 2012;130:602–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Lian J, Huang Y, Huang RS, Xu L, Le Y, Yang X, et al. Meta-analyses of four eosinophil related gene variants in coronary heart disease. J Thromb Thrombolysis. 2013. doi: 10.1007/s11239-012-0862-z.PubMedGoogle Scholar
  63. 63.
    Huang Y, Zhou J, Ye H, Xu L, Le Y, Yang X, et al. Relationship between chemokine (C-X-C motif) ligand 12 gene variant (rs1746048) and coronary heart disease: case–control study and meta-analysis. Gene. 2013;521:38–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Lian J, Xu L, Huang Y, Le Y, Jiang D, Yang X, et al. Meta-analyses of HFE variants in coronary heart disease. Gene. 2013;527:167–73.PubMedCrossRefGoogle Scholar
  66. 66.
    Purdue MP, Lan Q, Kricker A, Grulich AE, Vajdic CM, Turner J, et al. Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: findings from the New South Wales non-Hodgkin Lymphoma Study. Carcinogenesis. 2007;28:704–12.PubMedCrossRefGoogle Scholar
  67. 67.
    HE X, LI F, YANG X. Investigation of single nucleotide polymorphism of LTA rs909253 with gastric cancer. Chinese J Mol Diagn Ther. 2011;3:241–4.Google Scholar
  68. 68.
    Zhang Y, He B, Pan Y, Wang S. Studies on the correlation between TNF gene-beta polymorphisms and gastric tumorigenesis. Chinese J Dig. 2010;30:404–6.Google Scholar
  69. 69.
    de Oliveira JG, Rossi AF, Nizato DM, Miyasaki K, Silva AE. Profiles of gene polymorphisms in cytokines and Toll-like receptors with higher risk for gastric cancer. Dig Dis Sci. 2013;58:978–88.PubMedCrossRefGoogle Scholar
  70. 70.
    Fu G, Shen X, Yue P. The association of TNF-β genetic polymorphisms and susceptibility of gastric cancer. Chinese J Public Health. 2007;23:924–6.Google Scholar
  71. 71.
    Chen X, Peng X. TNF gene-β, interleukin-4 polymorphisms and gastric cancer. Chinese J Dig. 2007;27:136–7.Google Scholar
  72. 72.
    Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med. 2012;18:589–98.PubMedCrossRefGoogle Scholar
  73. 73.
    Daller B, Musch W, Rohrl J, Tumanov AV, Nedospasov SA, Mannel DN, et al. Lymphotoxin-beta receptor activation by lymphotoxin-alpha(1)beta(2) and LIGHT promotes tumor growth in an NFkappaB-dependent manner. Int J Cancer. 2011;128:1363–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Kim YJ, Lee HS, Yoon JH, Kim CY, Park MH, Kim LH, et al. Association of TNF-alpha promoter polymorphisms with the clearance of hepatitis B virus infection. Hum Mol Genet. 2003;12:2541–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Tan JH, Temple SE, Kee C, Waterer GW, Tan CR, Gut I, et al. Characterisation of TNF block haplotypes affecting the production of TNF and LTA. Tissue Antigens. 2011;77:100–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Ikeda S, Tanaka N, Arai T, Chida K, Muramatsu M, Sawabe M. Polymorphisms of LTA, LGALS2, and PSMA6 genes and coronary atherosclerosis: a pathological study of 1503 consecutive autopsy cases. Atherosclerosis. 2012;221:458–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Menke V, van Zoest KP, Moons LM, Hansen B, Pot RG, Siersema PD, et al. NcoI TNF-beta gene polymorphism and TNF expression are associated with an increased risk of developing Barrett's esophagus and esophageal adenocarcinoma. Scand J Gastroenterol. 2012;47:378–86.PubMedCrossRefGoogle Scholar
  78. 78.
    Vairaktaris E, Yapijakis C, Serefoglou Z, Avgoustidis D, Critselis E, Spyridonidou S, et al. Gene expression polymorphisms of interleukins-1 beta, -4, -6, -8, -10, and tumor necrosis factors-alpha, -beta: regression analysis of their effect upon oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2008;134:821–32.PubMedCrossRefGoogle Scholar
  79. 79.
    Villanueva A, Savic R, Llovet JM. Lymphotoxins: new targets for hepatocellular carcinoma. Cancer Cell. 2009;16:272–3.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Wolf MJ, Seleznik GM, Zeller N, Heikenwalder M. The unexpected role of lymphotoxin beta receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development. Oncogene. 2010;29:5006–18.PubMedCrossRefGoogle Scholar
  81. 81.
    Kolokythas A, Karas M, Sarna T, Flick W, Miloro M. Does cytokine profiling of aspirate from jaw cysts and tumors have a role in diagnosis? J Oral Maxillofac Surg. 2012;70:1070–80.PubMedCrossRefGoogle Scholar
  82. 82.
    Clouston D, Bolton D. In situ and intraductal epithelial proliferations of prostate: definitions and treatment implications. Part 2: intraductal carcinoma and ductal adenocarcinoma of prostate. BJU Int. 2012;110 Suppl 4:22–4.PubMedGoogle Scholar
  83. 83.
    Farnault L, Sanchez C, Baier C, Le Treut T, Costello RT. Hematological malignancies escape from NK cell innate immune surveillance: mechanisms and therapeutic implications. Clin Dev Immunol. 2012;2012:421702.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Watanabe T, Ishihara K, Hirosue A, Watanabe S, Hino S, Ojima H, et al. Higher-order chromatin regulation and differential gene expression in the human tumor necrosis factor/lymphotoxin locus in hepatocellular carcinoma cells. Mol Cell Biol. 2012;32:1529–41.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Yapijakis C, Serefoglou Z, Vylliotis A, Nkenke E, Derka S, Vassiliou S, et al. Association of polymorphisms in tumor necrosis factor alpha and beta genes with increased risk for oral cancer. Anticancer Res. 2009;29:2379–86.PubMedGoogle Scholar
  86. 86.
    Coory MD. Comment on: heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol. 2010;39:932. author reply 933.PubMedCrossRefGoogle Scholar
  87. 87.
    Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–61.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhao HY, Chen YX. Review of relationship between tumor necrosis factor genetic polymorphism and hematological malignancies. Ai Zheng. 2003;22:216–20.PubMedGoogle Scholar
  89. 89.
    Demeter J, Porzsolt F, Ramisch S, Schmidt D, Schmid M, Messer G. Polymorphism of the tumour necrosis factor-alpha and lymphotoxin-alpha genes in chronic lymphocytic leukaemia. Br J Haematol. 1997;97:107–12.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2013

Authors and Affiliations

  1. 1.Ningbo Medical Center, Lihuili HospitalNingbo UniversityNingboChina
  2. 2.Department of Neurosurgery, Ningbo First HospitalNingbo UniversityNingboChina
  3. 3.School of Marine SciencesNingbo UniversityNingboChina
  4. 4.Zhejiang Provincial Key Laboratory of PathophysiologyNingbo UniversityNingboChina

Personalised recommendations